
Department of Computing Science

and

Department of Electronic and

Electrical Engineering

University of Glasgow

Team E Project Report
Level 3, 2004/2005

Lego Chess Robot

by

Stewart Gracie, Jonathan Matthey, David Rankin,

Konstantinos Topoglidis

We hereby give our permission for this project to be shown to other University
of Glasgow students and to be freely distributed in an electronic format. Please
note that you are under no obligation to sign this declaration, but do-
ing so would help future students.

Stewart Gracie

Jonathan Matthey

David Rankin

Konstantinos Topoglidis

i

Abstract

As Team E, we aim to build a fully interactive robot that will play chess on a physical board
against a human player. This robot’s movements will be dictated by a chess engine written in
C running under a Windows environment on a desktop computer. The computer and robot will
interact via infra red transmissions. The human’s moves are detected by a specially built chess
board that is connected to the PC via USB using Phidgets technology. The Robot’s movement
is controlled by motors and sensors which are operated through RCXs which are programmed
in NQC. The setup offers a strong game supporting all legal chess moves such as castling, en
passant and promoting pieces.

Once complete a human player is able to play against a computer chess program without
the distractions of the computer. The game is played on an actual chess board and, after setup,
the computer can be ignored altogether. An LCD display, LED lights and sound effects keep
the user continually informed. The system will allow individuals to test their chess abilities on
a real board without having to move for the computer.

ii

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Background . 1
1.3 Preliminaries . 1
1.4 Aims . 2
1.5 Module Description . 2

1.5.1 Lego Robot Design . 2
1.5.2 Board Design and Construction . 3
1.5.3 Board Software . 3
1.5.4 Chess Engine Interface Development . 3
1.5.5 RCX Movement Programming . 3

1.6 Document Outline . 4

2 Project Specification 5
2.1 Team E - Requirements Specification . 5
2.2 Essential Goals . 5
2.3 Quantifiable Factors . 6
2.4 Additional Goals . 6
2.5 Risk Factors . 7
2.6 Timeline . 7

3 Lego Robot Design 8
3.1 Design Rationale . 8
3.2 Design Options . 8

3.2.1 Magnetic Robot . 8
3.2.2 Robotic Arm . 8
3.2.3 Girder Robot . 9
3.2.4 Comparison Criteria . 10
3.2.5 Final Decision . 11

3.3 Design Considerations . 11
3.4 Grabber Prototypes . 12

3.4.1 Tripod Grabber Model . 12

iii

3.4.2 Final Grabber Model . 13
3.4.3 Lifting Mechanisms for Grabber . 14

3.4.3.1 Two Track Model . 15
3.4.3.2 Final Lifting Model . 15

3.4.4 Motor Matching . 17
3.4.5 Platform for Grabber . 18
3.4.6 Movement of Grabber . 18

3.4.6.1 Horizontal Movement . 18
3.4.7 Structure . 19

3.4.7.1 Stationary Model . 19
3.4.7.2 Vertical Movement with Tracks 20

3.5 Stopping the Structure . 21
3.6 Final Design . 21
3.7 Future Improvements . 22

4 Board Design and Construction 23
4.1 Introduction . 23
4.2 Board Requirements . 23
4.3 Lego Vs Phidgets . 23
4.4 Detection Methods . 24

4.4.1 Visual Detection . 24
4.4.2 Light Sensors . 24
4.4.3 Magnets . 25
4.4.4 Switches . 25

4.5 Analogue Vs Digital . 26
4.5.1 Digital . 26
4.5.2 Analogue . 26

4.6 Investigating the Phidgets Analogue Inputs . 27
4.7 Switch “Sensor” Prototyping . 28
4.8 Bouncing . 28
4.9 3x3 Prototype . 28
4.10 Interference . 29

4.10.1 The Cause . 30
4.10.2 The Solution . 30
4.10.3 Problems in the Future . 31

4.11 LEDs . 31
4.11.1 Row and Column LEDs . 32
4.11.2 The Decoder . 32
4.11.3 Prototype Circuit . 33
4.11.4 Power Supply Changes . 33

4.12 Circuit Layout and Construction . 34
4.13 Board Construction . 34

iv

4.14 Testing Outcomes . 36

5 The Board’s Software 37
5.1 Introduction . 37
5.2 Requirements . 37
5.3 The Phidgets Software Components . 37

5.3.1 The PhidgetInterfaceKit class . 38
5.3.2 The IphidgetInterfaceKitEventsAdapter class 38

5.4 Early Programs . 38
5.5 Simple GUI . 39
5.6 LED Control . 39

5.6.1 LedOutput2 . 40
5.6.2 LedOutput3 . 40

5.7 Software Debouncing . 40
5.8 GuardedLCD . 41
5.9 MoveGen . 41

5.9.1 Normal Moves . 41
5.9.2 Special Moves . 42
5.9.3 Cancel . 42

5.10 Extra Output from MoveGen . 42
5.10.1 ThinkingOutput . 42
5.10.2 LEDhighlightMove . 43

5.11 User Buttons . 43
5.11.1 The Yes/Begin Button . 44
5.11.2 The No/Cancel Button . 44

5.12 RobotMove . 45
5.13 Extras . 45

5.13.1 WelcomeLEDs . 45
5.13.2 Sounds . 46

5.14 Known Problems . 46
5.14.1 Checkmate Kills . 46
5.14.2 Normal Kill Moves . 46
5.14.3 Pawn Promote . 46

5.15 Possible Improvements to the Software . 47

6 Chess Engine Interface 48
6.1 Requirements . 48
6.2 Choosing the Chess Engine . 48

6.2.1 Engine List . 48
6.2.2 Winboard/Xboard . 48
6.2.3 FEN . 49

6.2.3.1 Description . 49

v

6.2.3.2 Data Fields . 49
6.2.4 Chess technicalities explained . 50
6.2.5 Evaluation Process . 51
6.2.6 Comparing Chess Engines . 51

6.2.6.1 GNU Chess . 51
6.2.6.2 Green Light Chess . 51
6.2.6.3 Nero . 51
6.2.6.4 Horizon . 52

6.2.7 Engines playing against each other . 52
6.2.7.1 GreenLightChess 1 - 0 GNUChess in 56 moves 52
6.2.7.2 GreenLightChess 1 - 0 Nero in 59 moves 52
6.2.7.3 GreenLightChess 1 - 0 Horizon in 40 moves 53
6.2.7.4 GNUChess 0 - 1 Horizon in 73 moves 53
6.2.7.5 GNUChess 1 - 0 Nero in 33 moves 54
6.2.7.6 Results . 54

6.3 Checking For Check . 55
6.3.1 Problem Description . 55
6.3.2 Possible Solutions . 55
6.3.3 Editing the Nero Engine . 55
6.3.4 Creating the Java “isColourInCheck” Method 56

6.4 Engine Interface Design . 57
6.4.1 Using Data Streams . 57
6.4.2 Method and Algorithm Descriptions . 57

6.4.2.1 function glcsetup() . 57
6.4.2.2 function callengine() . 57
6.4.2.3 function updateboard() . 58
6.4.2.4 function printBoard() . 58
6.4.2.5 function fenUpdateBoard() 58
6.4.2.6 function isColourInCheck() 58
6.4.2.7 function getMovetype() . 58
6.4.2.8 function readMove() . 58
6.4.2.9 function sendMove() . 59

6.5 Pawn Promotion . 59
6.5.1 Problem Description . 59
6.5.2 Solution . 59

6.6 Testing . 59
6.6.1 Results . 59

6.7 Future Improvements . 60
6.7.1 Undo . 60
6.7.2 Difficulty Setting . 60
6.7.3 Piece Promote leading to Check . 60

vi

6.7.4 The 50 move and the 3 repetitive move draw 60
6.7.5 Portability . 61

6.8 Conclusion . 61

7 Programming RCXs 62
7.1 Available Programming Languages . 62

7.1.1 Ada/Mindstorms 2.0 . 62
7.1.2 pbForth . 62
7.1.3 BrickOS . 62
7.1.4 leJOS . 63
7.1.5 tinyVM . 63
7.1.6 Lego RIS graphical environment . 63
7.1.7 Gordon’s Brick Programmer . 63
7.1.8 RoboLab . 63
7.1.9 Spirit.ocx . 64
7.1.10 NotQuiteC (NQC) . 64
7.1.11 Conclusion . 64

7.2 Sensors . 64
7.3 The Code . 66
7.4 Communications . 68
7.5 Testing the system . 70
7.6 Improvements / Extensions . 71

8 Conclusion 72
8.1 Project Status . 72

8.1.0.1 Vehicle Design . 72
8.1.1 Positioning . 72
8.1.2 Chess Interface . 72

8.2 Conclusions . 73
8.2.1 Achievements . 73

8.3 Further Improvements . 73

A Summary of Project Logs 74
A.1 Stewart Gracie . 74
A.2 Jonathan Matthey . 76
A.3 David Rankin . 79
A.4 Konstantinos Topoglidis . 81

B Installation Instructions and Stepwise Guide 83
B.1 Installation . 83

B.1.1 The Chess engine . 83
B.2 Starting a Game . 83
B.3 Making a Move . 84

vii

B.4 Sounds and Lights . 84
B.5 Cancelling Moves . 84
B.6 Quitting . 84
B.7 Castling . 85
B.8 Taken Pieces . 85

C Glossary of Terms 86

D Chapter 3 Extra Information 88
D.1 Matching Motor Data . 88
D.2 Chess Piece Selection . 89

E Tester’s Consent Forms 91

viii

Chapter 1

Introduction

This document covers the work, difficulties and achievements of team E while undertaking the
Level 3 Electronic and Software Engineering (ESE) Team Project.

1.1 Motivations

The project deals with many of the problems faced by modern system designers. The system
has to integrate with a foreign piece of code, the open source chess engine that the robot
depends on, as well as having to design, prototype and build hardware to capture external
events and to integrate with pre-bought technologies. The final system should demonstrate the
wide knowledge of technology, both computer science and electrical engineering, that a level 3
ESE student possesses.

The project also has a practical use, allowing chess players to test their abilities on a real
chess board while not having to move for their computer opponent. It is a close simulation to
a real game of chess and should not distract the human player from their game.

1.2 Background

Currently there are many versions of travel chess available, comparable to the Lego Robot
Chess as a computerised chess gaming system but they all provide very little feedback and poor
interactivity, requiring the user to tediously move both black and white pieces usually indicated
by small LEDs flashing. Also on the market nowadays, many versions of chess software offer
players a strong game of chess with a fair representation of graphical pieces, but no matter how
realistic they can never compete with an actual physical chess game experience.

1.3 Preliminaries

Knowing the basics of chess is a preliminary of reading this document, as special moves such as
en-passant can confuse the reader, all chess technicalities will be explained in a later section.

1

There are sections which explain the implementation of interfaces that were designed to make
this solution possible as well as some electrical engineering detail in the detection of user moves
but everything is clearly explained and requires no technical background knowledge.

• All electronics and computation outside the desktop computer should be focused on the
Lego Mindstorms RCX or the Phidgets Interface Kit.

• The team has been granted use of the Project Lab on level 7 but this must be shared
with other teams from both Level 3 and 4.

• The project had to be completed in a space of six months.

• Our manned resources consisted of the members in our team.

• Sharing of Lego material must be negotiated with the other teams, any extra material
should be ordered and reasonable expenses claimed

1.4 Aims

The final product has to meet a certain criteria, the robot must be able to detect the players
move, computes its counter move, and moves its piece accordingly. It should support all legal
chess moves such as castling, en-passant, and pawns reaching the final rows becoming greater
pieces. The robot should offer a very high level of interactivity, communicating to the user
through a LCD display which with the help of buttons can incorporate appropriate menus with
options to be selected. A series of LEDs around the board as well as speaker system will add
to the amount of information provided to the user of the situation. Certain states will require
different outcomes, invalid and special moves should be alerted to the user, as well as check and
checkmate positions. There are a number of available extras that augment the functionality
of the robot, being able to set the difficulty level of the computer increases the skill range
spectrum of possible users, having an option to undo the players move, and saving and loading
a game state.

1.5 Module Description

The project was easily modularised helping the allocating of resources to maximise productivity.
The four modules were Lego Robot Design, Board Design and Construction, Chess Engine
Interface Development, RCX Movement Programming

1.5.1 Lego Robot Design

We had to consider different options in building the actual robot to move the pieces, there were
three strong suggestions: using magnets to move pieces from below the board, using an arm
with a movement axis like an elbow, and the last consists of two parallel struts with another
beam across it making a moving frame with an end effect grabber moving on these beams. We

2

found the last suggestion to be most accurate and practical, as the magnets made it difficult
and slow for moving in special moves, and the arm was too unbalanced adding many more risks
into the equation. We had to study gear to force ratios as well as constructing a strong robot
with appropriate sensors and motors.

Stewart Gracie was the team member made responsible for this section of the project.

1.5.2 Board Design and Construction

After researching different detection possibilities, we discarded digital cameras and magnet
possibilities and decided to construct a pressure board where each square is to be pushed
indicating the start and end squares of a move. This is a much more robust efficient solution
and allows us to put our electrical engineering skills into practice as the board consists of 64
switches with a series of resistors and an analogue to digital converter to identify which square
was pressed.

David Rankin was the team member made responsible for this section of the project.

1.5.3 Board Software

The board must also have a substantial amount of software running so that the output of the
board can be resolved into a players chess move. This move must then be passed to the chess
engine, and once a counter has been returned the software must handel the output appropriately
so that the user is informed. The LEDs, text display and sounds are all triggered by the physical
board but orchestrated by its software running on the computer.

David Rankin was also the made responsible for this section of the project.

1.5.4 Chess Engine Interface Development

We are using Green Light Chess, a free software engine that has many configurable features,
we had to learn about opening streams to processes in java as well as writing an algorithm to
check for whether player is in check or checkmate as the engine was built to interact with a
popular graphical interface called Winboard and it deals with checks. The interface must also
deal with all the chess situations and special moves.

Jonathan Matthey was the team member made responsible for this section of the project.

1.5.5 RCX Movement Programming

Deciding on building a core method of move which required detailed measurements of feedback
values from rotation and light sensors, every other method relied on a combination of this
original move method. A lot of trial and error took place in achieving successful movement
functions, as well as finding out what how to send data to the RCX and getting the RCX to
communicate between each other to produce fast concurrent movement solutions.

Konstantinos Topoglidis was the team member made responsible for this section of the
project.

3

1.6 Document Outline

The remainder of the report highlights each step taken by the group to create our project
solution, beginning with considering possible solutions, specifying quantifiable requirements,
producing designs, and creating a working prototype. It details the progress made throughout
the project as well as the team structure and risk management techniques used to ensure a
successful outcome.

4

Chapter 2

Project Specification

2.1 Team E - Requirements Specification

We have chosen to tackle our Third year Team Project using Lego Mindstorms, Phidgits and
tailored electronics. Our team has decided upon a challenging project which is designing and
implementing a Chess Playing Robot, this document will define the specifications and targets
for our project as well as the factors that we are expecting to evaluate the final solution against.

The idea behind this project was to create a robot that could play chess against a user. The
aim would be to create a robot that could move for itself and distinguishing the moves of its
opponent so that the human player can concentrate entirely on their moves and game strategy.
Its main purpose is to be able to aid a user in learning chess, and as it will recognise false moves
and mistakes. It will also extend to being able to give experts a good game.

Typical chess software nowadays offers players with a fair representation, graphical, of pieces,
colours, boards etc But no matter how realistic, it can never compete with an actual game of
chess. Our team will be bringing that experience of playing against intelligent software to a real
environment. Previously created systems have required the human to move for the computer
or to enter in their moves on a computer after they have moved on the board. This process
can become very tedious and boring after a few minutes. The aim is that the human will be
concentrating on their game solely and have no need to worry about the computer’s movements
because the robot will work at a realistic level of efficiency and accuracy. This system will be
a welcome opponent to chess players, experts or novices alike.

2.2 Essential Goals

The Chess Player Robot is required to be able to:

• Detect its opponent’s moves.

• Remember the state of play.

5

• Move its pieces. As well as take out opponent pieces in the process.

• Play special moves such as castling and en passant.

• Display the move that the user has played, as well as the computers counter move.

• Warn user of an illegal move, and request it played it again.

• Have a procedure to recover from problems such as piece being knocked over.

• Display state of play such as who’s move it is, check and checkmate.

• Have several levels of difficulty.

2.3 Quantifiable Factors

The Chess Player Robot will:

• Be able to carry out the computers moves within 2min when not taking another piece
with an additional 1.40 min when taking another piece off the board.

• Grab a piece successfully with an accuracy of 90% meaning it will succeed 9 times out of
10.

• Move a piece successfully with an accuracy of 75% meaning it will succeed 15 times out
of 20.

2.4 Additional Goals

These are extra goals that should be implemented if time is available, each improving the
experience and performance of the Chess Player Robot but yet not essential to its purpose.

The Chess Player Robot could have:

• Be able to play the simpler game of draughts in a similar fashion.

• A clock display to count length of user moves as a way of improving timed games.

• A looped animation to show thinking time for computer.

• LEDs on the side of the board that light up for the according square pressed.

• Different sounds for illegal moves, check, and checkmates.

6

2.5 Risk Factors

If the robot drops a piece either in travel or badly on a square, it will be detected. It will
attempt to rectify it 3 times over and if fails it will ask the user to complete the move for it.
This should take place as little as possible.

Another risk is how well centring of pieces, whether it’s the user moving the piece not
dead centre on a square or the Robot being slightly inaccurate in placing pieces. This will
be overcome by a well shaped end piece which should grab a piece from a range of different
positions on a square.

Speed of processing, movement, accuracy of detection and placement are all risks identified
in the quantifiable factors as they can be measured.

2.6 Timeline

Now - Dec 17th:

- David: Produce board with 64 switches, capable of identifying which square has been
pressed. Powered by the Phidgits Kit and also read by a Phidgit’s sensor.

- Stewart and Kostas: Design and build an end piece arm prototype in Lego Mindstorms
which will grab a piece, raise it, and lower it successfully.

- Jonathan: Researching into an appropriate Chess engine, simulating input and output from
it. Programming Phidgit input to detect Chess Board, and output to display required
features.

- Documentation is written on current progress.

Jan - Feb

- Lego Mindstorms Prototype is nearly complete, testing and improvements are done on
movements, efficiency and accuracy.

- Phidgit and RCX programming is combined to produce output movement from input on
board.

- Software is first written to be tested with draughts to test Prototype.

- Documentation is written on progress.

Feb - March (2weeks)

- Final testing takes place with repeated improvements where needed.

- Work on Additional Goals if Essential ones are satisfied.

- Finish Documentation ready for hand in.

7

Chapter 3

Lego Robot Design

3.1 Design Rationale

The robot had to be able to lift any chess piece from a standard 8x8 chess board, move it to
its destination and return to its own start position. This meant that it had to run vertically
along side the board while also being able to move the grabber horizontally to any square.
This movement had to fit in with the time constraints set by the group at the beginning of the
project so that the user wasnt waiting too long for his or her turn.

3.2 Design Options

There were three strong candidates for the implementation of the chess robot; a magnetic robot,
robotic arm or girder robot.

3.2.1 Magnetic Robot

One option was to have a robot that would move the pieces around using a magnet. This
option would incorporate Lego to handle all moving parts but would require all other parts
to be implemented using tailored electronics. The basic idea was to have the robot move
underneath the chess board with a magnet in contact with the underside of it, as seen in figure
3.1. Each chess piece would have to be fitted with a metal plate on its base that would allow
the robot to move it. This robot would be able to move unseen by the user and not inhibit the
users playing area in any way. This idea had already been built by another Lego creator and
is fully documented at this site http://www.artilect.co.uk/lego/default.asp.

3.2.2 Robotic Arm

There exists many variations of Lego robotic arms; the key is finding a suitable one for the
project. The most popular robotic arm consists of a flat robot with 2 degrees of rotation similar

8

Figure 3.1: Lego Chess Board using Magnets to move pieces

to a shoulder and elbow. One of its many appealing aspects is its resemblance to human move-
ment, enriching the chess playing experience. It most importantly does not importantly doesnt
hinder the players movement in any way. An example of the possible robot is shown in figure 3.2.
This was taken from the following website http://www.marioferrari.org/lego mindstorm.html
by fellow Lego creator Mario Ferrari.

Since this type of robot has already been created the team felt it would be pointless to try
and re-invent it. Its ability to measure the distance the arm had to move and where it was
in real time also required more sensors and RCXs than were made available. For both these
reasons the team decided to discarded this design.

3.2.3 Girder Robot

The last suggestion for our Lego solution was the Girder Robot which is similar to a theme
park grabber. It consists of a top level beam and 2 vertical struts at either end, the end effect
grabber runs along the beam. The horizontal and vertical movement axis of the robot are
achieved by the grabber moving across the top level. The struts themselves hold the entire
structure as it moves alongside the board.

Of the Lego arm designs, this was the most practical and least intricate of the two due to
its simple movement and design. It would also require less sensors and RCXs to measure its
movement and drive the motors of each part.

9

Figure 3.2: Broad Blue Lego design

3.2.4 Comparison Criteria

The following are features that each robot were compared against to give the team a greater
understanding of where each of the robot strengths and weaknesses lay.

• Movement Accuracy
Measured by its ability on moving pieces to the centre of squares and the ability to
successfully lift pieces. It must also be able to hold the pieces for the length of time to
get from its start position to its destination square.

• Movement Efficiency
Assessed on the timeliness and general amount of movement required by the robot to
perform standard move operations as well as kill moves.

• Piece Detection
Pieces must be detected by the robot, this is an issue discussed in the implementation of
the board but also has a strong impact on the choice of robot.

• Implementation Achievability
Whether the implementation can be achieved depends on certain factors like size, number
of pieces, sensors, robots and general balance of the whole robot.

• Idea Originality
This will discuss how original the idea in question is and will be decided based upon other
Lego creators finished projects.

10

3.2.5 Final Decision

The final choice of the group came down to weighing up the advantages of each robot. The
magnetic option allowed all the electronics to be hidden from the user within the board and
since no lifting of any pieces would be required the chance of dropping any can be discarded.
Pieces and moves could be detected using a number of different techniques like having light
sensors under the squares to detect if a piece is above it.

It would however be harder to prototype. It has the added complexity of the robot moving
a piece from the back row to the front, e.g. a knight moving to a square on the first move.
It would have to first move the pawn directly in front of the knight out of the way and then
replace it after the knights move was made. This meant that movement for this type of robot
could be potentially slow and complex if a piece was surrounded by other pieces. The team
felt that this robot would not keep within the time requirements set out and so this idea was
discarded.

The final decision lay with the Girder design model, this Lego grabber had a simple design
and the ability to split each part of the robot into small, easily prototyped modules. Each
prototype could be designed separately and tested before being integrated together to form the
fully functional robot. The major drawback of the Lego option was that it had to be visible
to the user and would slightly infringe on the players movement area. It did however have the
potential to meet all criteria as long as a suitable plan for its construction was decided upon.

With all these arguments in mind the team decided on the girder option based mostly on its
easily prototyped components. This would allow the team to work independent of each other
on all the different parts of the final system while being able to integrate each part separately.
This would allow testing and maintenance tasks to be carried out with less difficulty should
any problems arise such as changing broken motors or fixing bugs in design.

3.3 Design Considerations

For each prototype to be made a number of factors had to be taken into account based on
limitations set by the system.

First of all the team was only allowed three RCXs of which our team decided we should
only use two to control the robot and communicate with outside components.

Second constraint was that each RCX had three inputs and three outputs so any sensors and
motors had to be controlled using these. This constraint was most challenging as an effective
method of measuring all the distances required hadnt been decided upon at the start of the
prototyping stage.

The third constraint set was that the robot wasnt allowed to invade the users playing area
when it was their turn. The team wanted the user to have total access to the board when
making their move.

The fourth constraint set was that the robot had to be able to move any piece to its
destination square within 2 minutes from start of movement to finish. The robot had also to
be able to kill any piece and move its own move within 3 minutes and 40 seconds.

11

The last constraint ensured the grabber had to be accurate enough to successfully pick up
a piece 9 times out of 10 and complete any move 15 times out of 20.

3.4 Grabber Prototypes

The design of the grabber mechanism could have been constructed in many different ways. Due
to the time limitations set by the project and the group, only two options were prototyped for
testing. The prototypes consisted of a pneumatic tripod model and a geared motor model.

3.4.1 Tripod Grabber Model

This model was based on the idea of a tripod with the three axles being pushed in together to
clasp the chess piece. The idea behind this was that the three axles, attached with blocks of
Lego for friction would close in around the base of the piece all at once and create a firm hold.
One of the proposed benefits of this design was that even if the chess piece wasnt centred on its
square any axle closing in would push it towards the other axles and it would be secure. This
would prove useful to minimize errors when the human player places a piece off centre and the
grabber has to pick it up.

This model consisted of three pneumatic pistons forcing the three axles together with enough
force to be able to hold it. The force was created by attaching the pistons to a pneumatic air
tank which would force air down through a hose and extend the pistons to close the tripod.
This model was able to be constructed in such a way that it wasnt very large or heavy which
proved useful when it had to be picked up to move a piece. The basic design idea is shown in
figure 3.3 below. The problem with this option was getting the air tank to provide a steady

Figure 3.3: Tripod Grabber

pressure to each axle long enough for the piece to be picked up and moved to its destination.
When the tank was left on then it would sometimes blow the hose off the tank but when it

12

was turned off the pistons would gradually loosen as the pressure was taken away. The only
way to overcome this was to have the tank push air along the hose at regular intervals to keep
a steady pressure on the pistons. Even using this method of controlled pressure it was never
accurate enough to stop the hose separating from the tank or in some cases the pistons.

3.4.2 Final Grabber Model

The second prototype was based on two parallel bars closing in on the piece at the base. The
difference between this model and the tripod was that this had to be constructed with a motor
to provide the torque to push the bars together. This model was constructed using a motor
and various sizes of gears and axles.

Figure 3.4: Clutch gear attached to motor

The benefits of this design was that the grabber could be geared up to have a greater torque
and with it a greater hold on the piece. It also meant that the motor could be left on while the
piece is being picked up so that it had a continuous hold of the piece throughout the move. This
feature was made available by the addition of a clutch gear to the motor to allow the motor to
continue turning its axle without turning the gear. A picture of this set-up is shown in figure
3.4. This is due to the centre of the gear containing a smaller inner gear. This inner gear has
a specific torque ratio which if met will continue to turn the inner gear without rotating the
larger outer gear. This constant torque applied to the gear allows the grabber to keep a firm
hold of the chess piece for the duration of its move. Without these properties of the clutch gear
the motor could burn out due to the current being too great when the axle is unable to turn.

The major drawback of the motor model was its increased size and weight due to all the
gears needed to create the appropriate torque and all the Lego bricks needed to hold it all in
place. The gear ratio is shown in figure 3.5 below. This gear train has a 5:3 gear ratio meaning
that five full rotations of the clutch gear corresponds to three full turns of the bottom two
gears. This meant that the bottom gears rotated slower than the clutch gear but has increased
its torque value by a 5/3. This extra torque is then passed onto the grabbers axles to hold
the piece. The main problem lay with its ability to pick up chess pieces accurately without
dropping them. Due to the round base of all chess pieces the bars werent shaped appropriately
to grab them from the base. Although the torque applied to the grabber was set to be more
than enough to hold a piece, it became apparent that the chess piece sometimes flip around in
mid-air to become upside-down. This problem was easily fixed though by using chess pieces
that had a small ridge just above its base for the grabber to hold. The chess set is shown in

13

Figure 3.5: Picture of gear ratio

the figure 3.6 below. A number of different chess sets were considered as a possible solution to
this problem. These possibilities are documented in Appendix D, section D.1, along with all
websites visited. The finished grabber model is shown in figure 3.7. This is actually the second

Figure 3.6: Picture of Chess pieces

of two models made for this type of grabber. The first prototype was deemed too large by the
team and then had to be optimized to make the smallest solution possible. It was also found
through testing that the longest axles the leg had werent long enough to pick up the pieces.
This was fixed by extending the legs using additional Lego pieces fitted at the bottom of the
first model. This addition has been added to figure

3.4.3 Lifting Mechanisms for Grabber

The lifting mechanism for the grabber was the easiest to prototype using Lego due to the large
choice of parts available. It could have been lifted using pulleys, gears or even a combination of
the two to form a lift type architecture. The lift idea meant that the grabber would be attached
to poles or wire and lowered down to pick up a piece. This was deemed too unstable as the
grabber could potentially swing from side to side and knock over adjacent chess pieces. This
method was therefore discarded before prototyping leaving two options open for modelling.

The first model meant that the grabber had to be fitted with two tracks at either side so

14

Figure 3.7: Picture of finished grabber with and without extensions

that two motors with gears could drive them up and down. The second model used only 1 set
of tracks but was fitted with poles at either side to help balance the whole structure.

3.4.3.1 Two Track Model

The two track model as mentioned above used a track at either side of the grabber and was
moved by having two motors fitted with a gear to push it up and down. Having two motors
lift the grabber proved a useful solution as it meant each motor had to bare only half the total
weight of which was now a very heavy grabber. Also having each motor running off a single
RCX output port meant that they both responded at the same time keeping the grabber as
straight as possible. This design is shown in figure 3.8. The problems with this arrangement
came to light as soon as the testing stage started. Although the motors worked perfectly and
were both perfectly matched (Section 3.4.4) at the same speeds the trouble came when trying to
stop the grabber at the top of its movement. Any attempt to halt it at its peak height usually
ended in a mass of Lego coming apart or a very unhealthy sound coming from the motors.
Knowing that the motors could get damaged due to this frequent forced stoppage meant this
method had to be discarded. An attempt was also made to stop and start the motors to keep
it at its peak height but was too inaccurate to succeed and was subsequently abandoned.

3.4.3.2 Final Lifting Model

The model that we opted for was to attach a single runner for lifting the grabber with a pole
either side to steady it. Using a single motor meant that it had to be able to lift the whole

15

Figure 3.8: Picture of lifter with two motors and two tracks

grabber by itself which could have required it to be geared to get the required power to lift
it. This however was not required as the motor was perfectly capable of lifting it on its own.
Therefore an 8 tooth gear was attached to the motor and made close contact with the 10 inch
track modelled below. The single motor also made it easier for the upwards motion to be halted
by placing Lego bricks at certain points to stop the movement where we wanted it. The second

Figure 3.9: Final lifting model

part of constructing this part was to find poles that would hold the whole mechanism steady.
They had to be cut to measure from a single length of carbon fibre measuring 4mm by 850
mm. This was cut in half and each length was then glued to each side of the frame. Now the
grabber could freely run up and down these poles when the motor was on without having to
worry about any instability.

16

3.4.4 Motor Matching

This process was used to find motors that ran at the same speed so they could be used when
parallel movement was needed in the system. If one motor was faster than the other, during
a move it could overtake the opposite motor and create a skewing effect which could cause
damage to the robot. The method of measuring the actual speeds of each motor was quite
simple. It involved attaching the motor to a rotation sensor as shown in figure 3.10 and
running it for a given time. During this time the sensor would output the results to the RCX
which counted the number of rotations in what is known as clicks. Clicks are the measure of
a single rotation divided by 16 meaning there are 16 clicks in 1 rotation. This allows for more
precise measurement of each motor. The code used to implement this test is shown below in.

Figure 3.10: Testing of motors

This code is written in NQC and basically loads the program into the RCX, runs the motor for
ten seconds and outputs the data back to the computer.

Task main()

{
//Declare sensor 1 as rotation sensor

SetSensorType(SENSOR 1,SENSOR TYPE ROTATION);

//Clear the sensor before starting program

ClearSensor(SENSOR 1);

OnFwd(OUT A); //Start motor running

Wait(1000); //allow motor to run for ten seconds

Off(OUT A); //Output data to computer

}

Using this data I recorded a table of values for all the motors available in the lab. This
table can be found in section D.2 of Appendix D. By comparing this data I could pick the two
closest matched motors to drive the robots legs running parallel to the board at the same rate.

17

3.4.5 Platform for Grabber

Before considering the different mechanisms involved in moving the lifting mechanism to any
square, a platform for it had to be decided upon. It was decided that the lifting mechanism
should run along two tracks as this was the simplest method available. The track is constructed
from Lego beams joined together in a row which is 27 inches long with tracks running 19 inches
along it. To hold the full weight of the grabber securely it was made three Lego beams wide
and two Lego beams thick. The full size of one of the tracks is shown below in figure 3.11.
With the structure chosen the next stage was to design the drive that would move the lifting

Figure 3.11: Picture of beams

mechanism.

3.4.6 Movement of Grabber

With the whole grabber module now finished the next task was prototype a drive that would
move it horizontally to any column on the board. For this task there was only one design that
was both simple and effective to use. A single motor could run the full length of the track
carrying the lifting mechanism to its destination square.

3.4.6.1 Horizontal Movement

As mentioned above this drive would run along two tracks spanning the breadth of the board
allowing access to any column. This drive uses only one motor to move along the two tracks
and one rotation sensor to measure the distance travelled. This drive was required to move
relatively slowly so that it could stop promptly when the rotation sensor signalled it had reached
it required distance. For this reason it had a 5:1 gear ratio which was slow enough and strong
enough to move the whole weight of the grabbing unit. This design is shown below in Figure
3.12. The last problem needed to be addressed was how the drive knew where it was at the
beginning of a move. It was quickly realised that the easiest way to control this was to make

18

Figure 3.12: Picture of gear train

the drive return to some designated spot after each move. This way the calculations involved
in moving the drive would be the same for every column.

To implement this design a touch sensor was placed at one side of the track. The drive had
a protruding Lego block that would make contact with the touch sensor to signal it was at its
home position. Using this method meant that the distance to any square would be constant
and could be calculated using the rotation sensor.

3.4.7 Structure

The next step was to build a platform for these beams to be attached to and that would move
them to any row of the chess board. There were two basic designs for this platform; first there
was the idea of building a stationary track running nearly 12 inches above the ground which the
grabber would move across. This structure would run the length of the board and two motor
drives would run along the track allowing the grabber to get to any row.

The second idea was to have the motor drives running along a set of tracks that were
alongside the board. This structure would hold the horizontal running tracks above the ground
where the lifting model would run across them.

3.4.7.1 Stationary Model

The main benefits of the stationary model were its stable structure and simple design. On each
track a single motored drive would move along to whichever row was needed by the grabber.
Using this method the drive had only to bare the combined weight of the horizontal tracks and
the grabber. Compared to the other design which had to move the whole weight of the total
structure this was an immense improvement.

19

The reason that this model wasnt prototyped entirely was due to its impedance of the
players area of movement. A basic model was built to give the team members a general insight
to its design before a more solid effort was made. The team agreed its giant structure that ran
up by the end of the chess board was a big distraction for the player. Its looming presence and
unsightly design was deemed unacceptable by the team and was discarded.

3.4.7.2 Vertical Movement with Tracks

This design was to move the full structure along the length of the board so that the grabbing
unit could reach any of the columns. It runs along two tracks set at the side of the board using
a motor drive which the struts, described above, are attached to. Each side was attached to
its own motor and gear train. This set of gears has a gear ratio of 5:1 as can be seen in figure
3.13. The reason for this is so that the drive moves slowly enough as to not shake the whole
structure too much. To measure the distance traveled by this drive a light sensor is attached

Figure 3.13: Picture of drive

at the base. This light sensor is pointed at the ground between the tracks where it reads black
lines off a strip of white paper. This strip of paper runs the entire length of the board with a
horizontal black strip every 2 inches. The light sensor reads the transition from white to black
and can tell which row its at by counting the number of transitions. When the required count
is reached the robot knows it has reached its destination.

Through testing it was found that certain factors reduced the sensors ability to read transi-
tions. On a bright day the sun light can interfere with the values that the sensor picks up and
it can fail to read a transition. It was also found that if the RCXs battery was low the sensor
lost some of its accuracy to distinguish light values. To overcome this problem the light sensor
had to be boxed in and positioned 3mm from the ground so that no background light could
interfere with the readings.

20

3.5 Stopping the Structure

Both motors to be used in the above design were matched using the technique described in
Section 3.4.4. This was due to the need for both motors to work at the same speed to stop
skewing between each drive. Each drive had a rotation sensor to measure the movement of each
square along the track but each had to have a designated starting point. All movements had
to be measured from this point and a sensor was required to detect when it had returned after
its move. A single touch sensor was then attached at one end of the track to resolve this.

In theory this single sensor method should have worked as both legs would start and finish
at the same time due to the motors being matched to the same rotation speed. This meant
that the single touch sensor would have detected when both legs had reached their starting
point again. In practice it showed that with the added weight of the grabber always resting on
one end meant that at the beginning of the move the opposite side moved faster. This meant a
little skewing as the robot commenced its move but this effect decreased as the grabber moved
to its desired column.

To correct this problem another touch sensor had to be stationed at the starting point of
the opposite leg. The problem with this was that the RCX had used its maximum amount of
inputs so there was none left to connect it to. This was fixed when Konstantinos designed and
built some circuitry to act as a multiplexer for both touch sensors. The circuitry and design
can be found within chapter 7.

3.6 Final Design

Figure 3.14: Final System

21

Figure 3.15: Left supporting strut of robot

3.7 Future Improvements

Areas that could be improved from the prototype include introducing a second motor to the
grabber. At the moment the grabber can fail to lift properly as the battery power gets low.
This is due to the friction applied by the sides which keep it stable after constantly being raised
through all the testing that the team used. This was not picked up by the testing team until
the two weeks before the final deadline which seemed too close to change the design.

The basic structure for holding the whole robot can also be reinforced to make it a little
stronger. At the moment there is a negligible shake as the structure starts its movement from a
resting position. The poles used in the lifting mechanism for the grabber could also be changed
for stronger ones which allow no movement. This would mean the grabber would lift up straight
and have no shake as it climbs to its peak position. It has also been discovered that the poles
are one centimetre too long at the bottom and can sometimes touch large pieces like the king.
It has never knocked it over in testing although this could happen.

22

Chapter 4

Board Design and Construction

4.1 Introduction

This chapter documents the design, implementation and testing of all aspects of the chess board
required for the human player to use when playing against their robot opponent. It discusses
the major design decisions taken throughout all stages of the development including board
prototyping, LED circuitry and board construction.

4.2 Board Requirements

The requirements of the board are large and varied and extend far beyond the construction of
a simple wooded box, though that is needed. The primary purpose of the board is to detect
the human’s move of a physical chess piece and convert this into a form that the chess software
can understand, while not hindering normal play nor forcing the human to use the computer in
any way. The board is the only facility the human player has to interact with the chess engine
and so methods for delivering all the required information to the user has be developed.

4.3 Lego Vs Phidgets

As earlier discussed the computational unit of a Lego Mindstorm kit is a yellow block called
an RCX. It was this unit that the board design initially utilised, but early on in the project
another solution became available. This new kit, called Phidgets, aimed to supply physical
representations of software widgets, hence the name, and supplied an alternative to using the
RCX .

Similar to the RCX, the Phidgets Interface kit comes with a number of different sensors
and outputs such as light sensors and motors, but as well as these the Phidgets has a two row
LCD that can be run from a USB port. Also included in the Phidgets kit is a voltage sensor
that can be attached to one of the analogue inputs and operates in the range of -30V to +30V.
The Phidgets kit has far more analogue inputs, eight, as opposed to the RCX’s 3, as well as

23

having eight digital inputs and eight digital outputs neither of which are offered in the RCX.
These additions allowed the creation of different, and in the end more sophisticated, designs
than would have been possible with the Lego RCX.

From early on in the design process of the board the Phidgets kit was identified as the
hardware best suited to the application. As well as the improvements mentioned above the
Phidgets also used USB to connect with the computer, as oppose to infra red, and facilitated
high level software handlers using languages such as Java.

4.4 Detection Methods

With the primary requirement of the board being the detection of the user’s move, the first
design decision that had to be made was how this move would be detected. A number of
possibilities are discussed below:

4.4.1 Visual Detection

This method transfers the detection of the user’s actions to outside the board, but is discussed
here so it may be compared against competing methods. Visual detection utilises a satellite
camera above the playing area to continually monitor the state of the board. It works by
analysing the current and previous pictures of the playing area for changes in the position of
pieces. It would be able to detect that a white piece was occupying a black square and, knowing
the initial state of the board and the moves that have gone before, work out what type of piece
it was. It would also be able to detect that a square is no longer occupied and thus track the
movement of pieces throughout the board.

This method has a number of attractive features. The first is that a game of chess would
continue entirely as normal. The human player would not need to press any buttons or signal
to the computer in any way that they have finished their move. Another key advantage is that
a standard board and pieces could be used. Other methods require specialised pieces or playing
areas that call on skills not covered in the course, such as wood work.

However, this method is far from perfect and there are a number of key points that made
this design not a good choice for satisfying the requirements. The first is that a satellite camera
would have to be firmly attached high enough above the board to capture all the playing area.
This would require some form of scaffolding and this was deemed unsatisfactory because of the
risk it would distract or intimidate a normal human player. The method is also susceptible to
changes in light conditions as well as posing great difficulty in resolving the pictures into the
state of the board. Because of this other solutions where sought.

4.4.2 Light Sensors

This detection method, like all other methods detailed below, employs a number of sensor
inlaid or underneath the playing area. In this variation, light sensors would be placed under
every square of the chess board and would detect when a piece is occupying a square because

24

the piece would cover the sensor and thus alter the sensors output. This method would not
require any detection equipment outside the board case itself, unlike the visual method, though
the detection equipment would still be visible as the surface would have to allow light to pass
so readings could be taken. This also would mean that the performance of the system could
be altered by external light conditions and may need recalibrated every day. Due to these
weaknesses this method is also unsatisfactory.

4.4.3 Magnets

A magnetic solution is an interesting detection method that could be expanded to not just
detect the state of the board but also to move the computers pieces in response. A magnet
could be used to move the pieces around the board playing out the computers move, though
this chapter is only concerned with the detection method. This would require chess pieces
with magnetic bases, possibly even using different magnetic poles to represent the two different
colours. These pieces, when placed on a square, would alter the output of that squares sensor
and comparing the current state of the board with previous boards it would be possible to work
out the players move. Such a method would be less susceptible to external conditions than the
previous methods and would also allow for more of the detection mechanism to be hidden
within a solid board. This approach does have a number of problems in practice. The first is
the difficulty in finding suitable magnetic sensors. A magnetic sensor in its simplest form could
be an open switch which is closed when a magnet is brought near, a Reed switch, but this device
has no way of detecting different poles and it is a rather crude device. Electronic Magnetic
sensors are also available but they are very expensive, starting at around 1 individually, and
64 would be needed. There is also a problem in containing the magnetic field of each piece to
within the confines of a square. Without careful consideration, surrounding pieces could trigger
the sensors under squares that are not occupied. The magnetic solution was an improvement
on any technique considered previously but was still lacking.

4.4.4 Switches

The sensors that detect a piece or a move need not be complex; simple switches or touch
sensors could be placed under each square and from their output the state of the board could
be calculated. Switches are cheap and easy to come by, making them good candidates for
detecting the state of an individual square on the board. Switches could be used to implement
two different detection methods. The first uses sensitive switches that are depressed when the
piece occupies the square. Taking the example of a game that has just started there would be
32 switches depressed, one for each piece on the board. This is a large amount of data to handle
yet during a move only a few squares will be affected making most of the data redundant.

The other method uses the same principal as travel chess where the player presses down on
the piece they are about to move, triggering the switch, and then moves the piece and presses
it down again at its destination. Using this method every move can be constructed from two
button press, the source and destination squares, limiting the amount of data that must be

25

interpreted during a single move. This method does slightly affect how the human plays the
game, in that they must press down on pieces when moving, but there are many positive points.
The switches are hidden from view and are unaffected by external changes in heat, light or small
magnetic variations. They are also cheap and readily available. For these reasons we adopted
this method for detecting the human’s move.

4.5 Analogue Vs Digital

Having decided what detection method was going to be used in the design the next step was
to decide how to use the switches because the Phidgets Interface Kit has both digital and
analogues inputs.

4.5.1 Digital

To individually number every switch using binary would require six digits which is possible
using the Phidgets Interface kit digital inputs. This would leave only two free digital inputs
for implementing other features such as user buttons on the board. During the early stages of
design two free inputs would have been sufficient to implement all proposed features, though
the finally accepted design used three digital inputs. For more details on why an extra digital
input was required please refer to section 5.12 of this report.

A digital solution would involve feeding the digital output of all 64 switches into an encoder.
Because you can not easily or cheaply buy a 62-to-6 bit encoder a number of smaller encoders
would have to be cascaded together to create the functionality of the desired large encoder.
Although a digital solution would be more resilient to interference this solution was abandoned
because of the difficulty in the digital circuit design. It was difficult to find any suitable encoders
to use in this circuit. There would also be a problem if the switches where numbered from 0 to
63 because there would then be an uncertainty as to what the output from the circuit would be
if no switches were being pressed because zero output represents the first switch. A solution to
this problem would certainly use at least one more of the digital inputs leaving only one input
for adding user buttons.

4.5.2 Analogue

An analogue circuit was used to express the switch output to the Phidgets kit. This solution
works on the principle that when no switch is pressed the analogue input would be zero, but
when a switch was pressed the voltage seen at the input changed corresponding to the exact
switch that was depressed. This could be done by using the Phidgets voltage sensor or by
using the analogue inputs directly. Using the voltage sensor required an external power source
ranging from +30V to -30V to exploit the full range of possible outputs available while still
having it grounded in relation to the Phidgets kit. Because of the need to use an external power
supply with such a large voltage difference the analogue inputs were investigated with the aim
of using their power, ground and input lines directly.

26

4.6 Investigating the Phidgets Analogue Inputs

Before designing the array of switches that will have to detect a user’s move, the internal work-
ings of the Phidgets analogue inputs had to be determined. This was first done by consulting
the data sheets and technical specifications found on the phidgets website, www.phidgets.com.
The specifications of the light and force sensors were analysed because these are the simplest
types of sensors used by the phidgets interface kit, 2-pin Resistive sensors. It was discovered
that their resistance varied proportionally to what they were designed to measure and that
both sensors had a minimum resistance of 500Ω.

This data was used to construct a simple “sensor” built using a 46KΩ trimmer variable
resistor in series with a 1KΩ resistor. Before this test sensor could be connected to the Phidgets
kit the three input pins of the analogue inputs had to be examined to determine what pins
carried the power, ground and input signals. This was done by connecting the Phidgets Force
sensor to the interface kit and analysing the signal on each line using an oscilloscope and
multimeter. It was worked out that the lines from left to right (when looking at the connectors
face on) are ground (0V), power (5V), input (voltage over variable resistor 0-5V) as seen in
figure 4.1.

Figure 4.1: Analogue sensor connector for the Phidgets Interface Kit

When wiring up the ”sensor”, coloured wire was used to ensure the lines were not mixed
up; black and red were adopted for ground and power, as is convention, and blue was used for
the input line. This colouring scheme is consistent throughout all the circuitry in this project.

Now, with the sensor wired up, the next task was to investigate the accuracy of the Phidgets
Interface Kit and the software that accompanies it. The output of the Phidgets kit can be
handled by a number of high level languages including VB and Java. Although Java is the
chosen implementation language for this project an already created VB program that came with
the software was used to take readings from the input. The analogue signal was represented as
a value between 0 and 1000 implying it has a resolution of 5mV, presumably a 10 bit Digital-
to-Analogue Converter (DAC). This accuracy is far finer than the necessities of the board.

27

4.7 Switch “Sensor” Prototyping

To test the switch method of detection a five switch sensor was created. In series between the
power and ground lines, were 5 resistors with different values to simulate different squares on
the chess board. In light of the findings described above 610Ω resistors were used to create
a potential divider. When no switch was pressed the output of the sensor, the input to the
Phidgets, was unconnected but when a switch was pressed the voltage at that node of the
circuit was seen at the output. Because of the input’s high impedance the voltage at the node
was not affected by the switching so all that changed in the circuit was that the output line was
raised to the nodes voltage. The first sensor when pressed connected the output to the supply
voltage and so the output seen by the computer was 1000. The lower switches simulated lower
squares with each node having a potential difference of 1/64V from its adjacent switch. This
triggered readings from the computer with approximately a difference of 15 between switches.

4.8 Bouncing

Extensive testing was done on this simple circuit to make sure the design was sound. The
accuracy of the computer readings and switching method proved to be satisfactory with a
reading varying only one or two units from its theoretical output. What was also noticed was
that the switches bounced a great deal. A switch bounces when it makes a poor contact with the
connecting metal. This can happen when it is pressed down or when it is released and the output
response of a bounce is that surrounding the peak, correct, value there can be intermediate
values. These values often differed by only 5 units from the theoretical value but in extreme
cases these values could be as little as half the desired output. As mentioned, bouncing only
happens during a state transition and because it has clearly defined characteristics it is possible
to de-bounce a switch within software. The software de-bouncing approach was adopted. More
details of the software construct for switch de-bouncing along with a discussion on other software
components of the board can be found in section 5.7.

4.9 3x3 Prototype

The simple 5 switch sensor demonstrated that the analogue switched detection method worked
in principle but to fully test the design and to realistically simulate the intended setup a 3 by
3 switch circuit was created on a bread board.

From previous discussions with the members of the team in charge of the robot it was decided
that each square on the chess board was to be 2 inches wide to allow for the inaccuracies of the
lego kit. The new prototype tried to accurately represent what the final circuit would look like.
Each of the buttons where spaced 2” apart, with each row of the prototype representing three
consecutive switches in a different part of the full sized chess board. During this prototype
a numbering system was adopted to label the switches in the full board. In this numbering
system the top left switch was numbered 0 and the numbers were incremented from left to right

28

Figure 4.2: The 3x3 Prototype used to prototype the board circuit

across a row and rolling over to the next row. The bottom right switch was thus numbered 63.
When switch 0 was depressed it connected the output to the supply, thus simulating the top
left square on a full size chess board. The middle row of the prototype simulated the middle
switches, numbers 31, 32, 33 on the full size board, where the bottom row of switches on the
prototype simulated the bottom right three buttons on the full size board.

To keep this prototype as accurate to the final plans as possible the test software used was
written in Java. More details concerning the development and implementation of the board’s
software can be found in chapter 5.

4.10 Interference

For many weeks the 3x3 prototype stayed in the bedroom of the team member in charge of board
design and construction. During these weeks the design was improved, LEDs were added, the
software developed and the board responded as expected. The team regularly met with their
advisor to discuss the progress of the project and to demonstrate any completed or operational
components. It was before one of these demonstrations that a serious problem emerged with
the board’s circuit design. The prototype was operating normally but to check that the code
could be easily run on a different computer all the files where transferred to another computer
in a different room. When the prototype was connected and the software run in these new
surroundings it did not respond as expected. Instead the prototype’s output responded as if
someone was repeatedly hitting the lowest two buttons. This response flooded the Phidgets
Interface Kit with data making it unresponsive to a humans occasional button press. This was
a major problem that threatened the entire design of the board meaning weeks of work and

29

research would be wasted.

4.10.1 The Cause

As mentioned above the prototype consisted of nine buttons spaced 2” apart, each buttons
having a common output line. If the length of wire used in this output line was calculated the
result would be approximately 24” of copper. This, it was discovered, was a sufficient length to
act as an aerial for a large number of transmitted signals. The reason that this problem emerged
when it did was due to the change of surroundings when testing the prototype. Within the
room it was developed, the number of transmitted signal is at a normal level, but when moved
to the new room it sat close to a wireless LAN router. It was the strong signal produced by
this wireless device that caused the symptoms witnessed. The wireless signal was being picked
up by the output line of the prototype and this induced a voltage of great enough magnitude
to register as a low button press, when in fact no buttons where pressed. This was a great
problem as the final board would be a 16” square needing an output line of at least 126”, much
greater than the nine button prototype that was detecting this error. After consulting Prof.
John Weaver in the department of Electronic and Electrical Engineering it was worked out that
the board would pick up FM radio and TV transmissions among other interference.

4.10.2 The Solution

One solution to this problem would have been to abandon the design and redesign the circuit
mindful of the problems witnessed but the team was reluctant to totally change the design
many weeks into the project. It was thus necessary to find a solution to this problem for the
existing design.

One obvious solution would be to shield the circuit from the external interference. This
would definitely cut out the systems sensitivity to interference but, as was pointed out by Prof.
John Weaver, if you are not careful when installing the shielding you can make matters worse
not better. An example of this is if you connect multiple shields together, as would be needed
to cover the entire board, then you must take care when grounding the shields. If you ground
the shields in more than one place you can create a potential difference resulting in current
flow through your shield from one ”ground” to another ”ground”, causing problems with other
grounded circuitry. In the end the circuit was not shielded because of the way it was going to
be installed in the final case. The switches need to be near the surface of a flexible playing
area in order that a player pressing down on a piece can easily trigger the appropriate switch.
As a result to fully shield the circuit a very thin and flexible shielding material would have to
be used between the flexible playing area and the switches. A grounded piece of kitchen foil
would supply a limited shielding effect but it is very fragile and would not stand up to continual
play. Even if the foil or some other shield was installed that could stand up to the demands
of the chess board, adding an extra layer of material between the switch and the playing area
would reduces the haptic and audio feedback the user receives, that is to say there would be
no satisfying click when pressing down on a button.

30

A solution which was adopted was to reduce the size of the circuit. Instead of having one
circuit with 64 switches and a common output line the board was split into quadrants each
made up of an independent circuit with only 16 buttons. This had an effect in two ways. Firstly
it quartered the output lines and thus reducing the size of the effective aerial. This did made
a difference but the four smaller output lines were still 28” in length (2 foot 4 inches). This is
still sufficient to pick up a whole host of external signals because this length is approximately
2.3 light nanoseconds, or a quarter wave at about 100MHz. With the extra zig-zags of the
output line it will pick up even higher frequencies such as commercial FM radio that transmits
at 100MHz. It should also be noted that computers themselves radiate at all frequencies. A
more useful effect this change had on the design was to increase the voltage division between
each node. This meant that between each node, and before the first one, there was a larger
margin where interference could affect the signal with no overall effect on the circuit.

As well as physically changing the circuit to combat the effects of interference the software
was also changed in light of the problem. The software is discussed in greater detail in chapter
5.

4.10.3 Problems in the Future

The actions discussed above do limit the effect that interference has on the circuit but it has not
solved the problem totally. It should be noted that this problem can still occur in areas where
interference is particularly bad, an example of such a situation would be in the same room as a
wireless router. With the aid of hindsight, if another board circuit was to be designed, a digital
design may be a more resilient design. An improvement that could be made to the existing
setup would be to shield all sides of the case excluding the playing area. This would not supply
total shielding but could reduce the likelihood of interference becoming a problem in the future.
This has not been implemented in the current board because the actions described above were
sufficient to stop the problem, for now, while still keeping the cost of creation as low as possible.

4.11 LEDs

As stated in the board requirements, the board is the only contact the user has between the
chess engine and associated software. Because of this the board has to be used to communicate
messages from the chess engine to the user. From early on in the design, the suggestion of
using lights or LEDs to highlight the squares on the board had been adopted as the best way of
communicating to the user their opponent’s move. It should be noted that in the final system a
text LCD and appropriate sounds supplement the LEDs but these are seen as extra requirements
and in the initial design and prototypes these were not implemented and all communications
to the user came through the LEDs.

31

4.11.1 Row and Column LEDs

It was with the 3x3 prototype that LEDs were first tested in conjunction with the circuit for the
playing area. Before this prototype, LEDs had been run directly from the Phidgets Interface
Kit’s digital outputs. This was not an acceptable solution because the Interface Kit only had
eight digital outputs, far fewer than the number of LEDs required to highlight a square. A
square was to be highlighted by individual row and column LEDs being turned on to indicate
what square attention should be drawn to.

To control 16 LEDs individually, 8 row and 8 column, required at least one decoder. A 3-to-
8 line decode was used to control the row and column LEDs. This limited the functionality of
the LEDs because only one row and one column LED could be on at any one time, but this was
sufficient for the requirements. The first challenge was to find two suitable decoder chips. After
some research it was discovered the Electronic and Electrical Engineering Department’s Stores
has a wide range of integrated circuit logic available for our use. In the end, two 74HCT138E
decoder chips were used because they performed the appropriate logical function, 3-to-8 line
decoding, could be run off a supply voltage as little as 2V or as large as 7V making it very
adaptable to any circuit design, and cost only 18p.

4.11.2 The Decoder

The 74HCT138E decoder chip comes in a 16 pin package with 3 input pins, 8 output pins and
3 enable pins as well as power and ground pins. A pin diagram of the chip is included in figure
4.3. There are three enable pins, two of which are active low, E1 and E2, and one active high

Figure 4.3: Pin Diagram extracted from the Decoder’s data sheet

pin, E3. When installed in the circuit E1 and E2 were permanently connected to ground, GND,
so that only the E3 pin was used to enable the chip. This pin was connected to digital output
6 of the Phidgets Interface Kit. The first three digital outputs of the Phidget were connected
to the input lines of the column decoder and the next three, outputs 3, 4 and 5, were used as
inputs to the row decoder.

32

4.11.3 Prototype Circuit

For the first prototype, three small LEDs where connected to the least significant outputs of
each decoder. The decoders were powered by the last digital output of the Phidgets Interface
Kit, output 7. It is usual practice to wire the LEDs in series with a resistor to limit the
current flowing and protect the LED. This was not necessary because the Phidgets outputs
were themselves current limited to make it safe to directly connect an LED to the outputs.
Because the decoders outputs are active low, the anode of the LED had to be connected to
the supply of the decoder, Vcc, and the cathode was connected to the decoders output. This

Figure 4.4: Diagram extracted from the LED data sheet

meant that when the LED was not on, both pins of the LED were raised to the supply voltage.
When the output line of the decode was selected by the digital output of the Phidgets, the line
dropped low creating a potential difference and the LED was illuminated while current flowed
into the output pin of the decoder. This was not satisfactory because small fluctuations in the
supply meant that the LEDs would flicker from time to time. To fix this problem an inverter
was used to make the outputs of the decoder active high. As a result when the LED was not
turned on both pins were grounded and when turned on the current flowed out of the decoder.

4.11.4 Power Supply Changes

When the LED control circuit was tested it operated correctly but it was noticed that the
LEDs were rather dull. Small LEDs were being used which would not be sufficient in the full
board, so they were replaced by larger 5mm LEDs which would be seen easily surrounding a
16” square board. When the LEDs were replaced, the circuit failed to illuminate the larger
LEDs. Using a multimeter to analyse the voltages within the circuit it was discovered that the
voltage of the digital output being used to power the chips and LEDs dropped to under 2V
when the chips were enabled. This was because the outputs could not supply the necessary
current to drive the two decoders, inverter chips and the illuminated LEDs. To remedy this
problem the circuit was powered directly from the power adapter that supplies the Phidgets
Kit. This supply was 6V DC and so resistors were needed to limit the current and protect the
LEDs. To calculate the values of the resistors needed key information about the LEDs was
extracted from the datasheet. The LEDs operate at a maximum constant current of 30mA
and dropped approximately 2.5V when lit. This required a resistor to drop 3.5V at a normal

33

operating current of 20mA and so 180 Ohm resistors were chosen. This new power supply also
allowed for two LEDs to be run in parallel off a single output, allowing row and column LEDs
to be placed at each end of the board.

4.12 Circuit Layout and Construction

Once the prototypes proved conclusively that all the circuitry would perform correctly the
final board had to be designed. The LED circuitry had been placed on vira board during the
prototype design and so there was no need to change this circuit as it was operating correctly. It
was decided that printed circuit boards (PCBs) would be used for the board quadrants because
of their size and the need for the switches to be accurately spaced 2” apart. The circuit design
software suite Orcad was used for laying out the quadrant circuit. To reduce the complexity of
making the circuit the quadrants were designed identically and space was left between them so
wiring could be fed from below.

The first step was to create a schematic for the circuit with Orcad Capture, so that it could
then be used to produce a PCB layout with Orcad Layout. Using Orcad Capture the schematic
was created with 16 switches, 15 resistors and 1 3-pin connector. The 16th resistor was left off
the PCB to keep the possibility open of using a variable resistor to calibrate the circuit in high
interference situations. In the final version a standard resistor was used as the 16th resistor and
was added to the circuit just before the connector used to attach the circuit to the Phidgets’
input leads.

Once the schematic was complete a net list was generated and exported to Orcad Layout
where the PCB could be laid out. The footprints of all the components were taken from the
Project Footprints library supplied to students by the Electronics Workshop in the Electronic
and Electrical Engineering Department so that the PCBs could be adequately created in-house.
The ”Dimensions” tool was used to maintain the 2” spacing between switches. Initially standard
tracks were laid out over the board but the use of wide tracks was advised by the Electronics
Workshop. This is because the acid used during the etching process can run over and miss the
tracks when there is a large space between them, as is the case in this PCB layout.

After the PCB layout was completed the layout was printed onto tracing paper and handed
into the Electronics Workshop for etching. Once the boards were created all that was left was
for all the 64 switches and other components to be soldered in to position and an appropriate
connector to be created to attach the circuit to the Phidgets Kit.

4.13 Board Construction

Now that all the components were completed it was time to build the case to house the playing
area and Phidgets kit. A few dimensions had already been decided such as the size of a square
on the board, but other measurements had to be discussed with those responsible for creating
the robot. After discussion and analysis of the robot prototype the following schematic was
design. In short this required a case that was 27” square, and around 3” high to contain a

34

Figure 4.5: Diagram showing the layout of the top of the board

suitable ditch for the pieces. Such a case was created out of 7mm thick MDF, using pine blocks
to support the corners and to raise the PCBs. A pine strut was also inserted under the MDF
between the ditch and the playing area to give extra support. The wood was held together
using wood glue and wood screws to give a solid join. The 16” square playing area was cut
out and replaced with medium thickness clear plastic. Paper with the checked patter was then
attached under the plastic. To allow for easy access to the circuitry contained within, the top
of the board was hinged. Because no soldering irons are allowed in the Project Lab where this
board was going to stay, all components were made so that they could be easily swapped out.
The LEDs are held in place using screw connectors so that if one was to blow they could be
replaced easily and quickly with just a screwdriver.

While the final board was being constructed a paper replica of the top surface was created
so the robot team could continue in their work knowing exactly the dimensions of the board.

35

4.14 Testing Outcomes

Testing of each individual module was carried out within the team but summative testing was
also carried out using testers who had no previous knowledge of the project. The summative
testing yielded a number of interesting points about the boards design and construction.

Users found no difficulty pressing the switches under the playing area, though sometimes the
software resulted in those presses not being picked up. It was also noted that the performance
of the switches decreased with prolonged use. The switches are sensitive mechanical compo-
nents that operated perfectly during the in team testing but with the battering they were put
under when being tested by other people their performance became noticeably poorer. This
performance deterioration is not serious enough to threaten the board’s usefulness presently
though if it was used continually for many more months the switches would need replaced.

Another point raised during testing was that when testers took an opponents piece they did
not know where to place them. This was problematic when they placed them in the path of the
robot or in the ditch because the ditch is not big enough to hold all the pieces in the board. A
solution would be to build in some box or ditch for users to keep those pieces that they have
taken.

On the whole, the board fulfilled all its requirements allowing the players a way of playing
against the robot and informing them of the computers actions via LEDs and the LCD.

36

Chapter 5

The Board’s Software

5.1 Introduction

The Board is useless without software running on the attached computer to control and in-
teract with it. The Phidgets Interface Kit can interact with programs written in a number
of high level languages but for this project the team decided to use Java as this is the object
orientated language that is primarily used in level 3 computing. The Phidgets kit supplies an
interface between the real word and the computer and so it has one major difference to the
RCX; the program that the hardware is interacting with is running on the connected computer
because the Phidgets has no microprocessor that can be programmed nor memory that could
hold instructions. This chapter documents the development of the software that is used to
communicate with the board, from its early design and use in prototypes, to the multiple class
structure that is used in the final setup.

5.2 Requirements

The software brings together all hardware components and marries them with the chess engine
which is orchestrating the computer’s response to the user’s moves. The software must capture
the information recorded by the Phidgets Interface Kit when a button is pressed down on the
playing area and decipher it to represent a square on the chess board. It must also inform the
user that it has picked up the button press properly. The software must then build up moves
from individual button presses and pass them on to the chess engine. Once the chess engine
has returned the computer’s counter move the software must highlight that move to inform the
user of the computers actions and then wait the user’s next move.

5.3 The Phidgets Software Components

The Phidgets Interface Kit comes with a number of software components for utilizing all the
functions of the kit. The first task was to discover the function of all the components and how

37

they may be used to greatest effect. The software comes in two parts.
The first part is Phidgets.dll which must be installed on a Windows computer so the oper-

ating system can detect and communicate accordingly with the hardware attached.
The second and more extensive part of the software is the Phidgets package. Contained

within this package are all the methods and software constructs that can be used by a Java
programmer to communicate with the Phidgets components. This project only used the classes
concerned with the Phidgets Interface Kit and the Phidgets LCD but there are many other
classes for controlling servo motors, RFID tag detectors and Humidity sensors contained within
the Phidgets package.

5.3.1 The PhidgetInterfaceKit class

The PhidgetInterfaceKit class is the simplest of the classes to understand. This class contains
a number of standard methods including Open() that returns true if the kit was successfully
opened and GetNumSensors() that returns the number of sensor inputs (analogue inputs) that
can be used. These methods are useful for setting up the Phidgets Interface Kit but cannot be
used for reading changing data from the kit, such as the value of the sensors input. For this
task an event listener must be associated with the Phidgets kit.

5.3.2 The IphidgetInterfaceKitEventsAdapter class

This class gives the programmer the ability to handle events triggered by the Phidgets Inter-
face Kit. When software is written for the Phidgets Interface Kit an event listener is associated
with the Phidgets kit. When an input change occurs an event is triggered in the software. It
is the job of the event listener to listen for these events and to handle them appropriately. The
events are handled by implementing the methods laid out by this interface class. The two meth-
ods that are useful for the boards applications are OnInputChange() and OnSensorChange().
OnInputChange() is the method that is called when one of the digital inputs changes state while
OnSensorChange() is the method that is called when a change occurs at one of the analogue
inputs. Both methods are passed the event and from this data can be extracted about the
event using the correct methods. get Index() will return the index of the input that triggered
the event where as get SensorValue() or get NewState() can be used to find out the new
value of the analogue or digital input respectively.

5.4 Early Programs

Early on in the project programs where used to test the response of the prototype hardware and
little if any handling of the events were done. Initial programs were only concerned with the
sensor inputs and simply outputted to standard output the raw value of the change, obtained
using get SensorValue(), and the index of the sensor that had changed. Once the 3x3 switch
prototype had been created the next task was to convert the received raw values into button
pressed. A large case statement was initially used but this was cumbersome and not easily

38

adaptable so a formula was created to calculate the square number from the raw sensor value.
The formula worked by knowing the difference between each switch and any initial calibration.
Through a number of divisions and multiplications the formula was able to return the correct
box number.

Basic error handling was also added to the software by informing the user when the change
did not occur at the right sensor index.

5.5 Simple GUI

Even with the software outputting the correct square number it was not always easy to identify
what square the software thought had been pressed. Because of this a simple graphical user
interface (GUI) was created to make it obvious to the tester what the software was picking up.
The GUI used the interface packages of java swing and awt. The window contained a grid of
9 squares laid out to represent the buttons of the 3x3 prototype. A bright green circle was
displayed on the square that was last pressed. This GUI made the testing process far easier
and more accurate as it was less likely the tester would miss an error.

Due to the complexities of chess and the demands of other parts of the project the GUI
was not expanded and used in the final system. Because the board used LEDs and a LCD to
communicate any necessary information a GUI in the final system is not entirely needed but if
more time allowed a GUI would be a worthwhile improvement.

5.6 LED Control

Once basic square identification had been implemented in the early software the task of control-
ling the LEDs had to be tackled. Before the LEDs were incorporated into the program test pro-
grams were written to test the workings of the LEDs. The first such test program looped through
all the “squares” by setting the correct digital outputs directly using the SetOutputState()

method contained within the PhidgetInterfaceKit class. After the appropriate row and col-
umn LED was set the program slept for two seconds so that the illumination could be seen,
before moving on to illuminate the next LED.

This test program worked correctly though it was evident that this method of setting LEDs
could not be used in the final system because it required the main program to sleep while the
LEDs were lit, thus holding up the main program. It also became evident that the program
should be split up into a number of clearly defined classes. As a result the LedOutput class
was created. This class extended Thread and so could run in parallel with the main program
without holding it up. The LedOutput constructor had as parameters the interface kit and the
row and column number of the square that was to be lit. When the thread was constructed it
set the appropriate digital outputs, enabled the control circuitry and then slept for a set time
before awaking and resetting the digital outputs and disabling the circuitry.

39

5.6.1 LedOutput2

After testing, a number of problems were discovered with the original LedOutput class and
a new version, LedOutput2, was released. When using LedOutput the program occasionally
crashed with an obscure error message, which after some further testing it was discovered was
due to multiple treads trying to access and control the shared resource of the Phidgets Interface
Kit. To combat this problem a new method called settLed() was created so that threads did
not directly change the state of digital outputs but called this method to do that for them.
This method was made thread safe by including static guarding objects within the class, one
for each digital output used, and creating critical sections of code in the new method. Critical
blocks are created in Java by using the synchronised keyword.

It also did not make sense to label switches by a number throughout most of the program
but to set the LED by passing in the row and column numbers. In LedOutput2 the constructor
was passed a box number and the row and column numbers where calculated by dividing or
modulo dividing by 8 respectively.

5.6.2 LedOutput3

The improvements implemented in LedOutput2 were sufficient to stop the program from crash-
ing but it was not performing as well as should be expected. It was noticed that if a button
was pressed quick enough after a previous button press then the LEDs would light for only a
few milliseconds before turning off again. This was obviously another problem concerned with
managing the shared resources of the Phidgets. When a button was pressed a new LedOutput2
thread was sporned and only died when the LED had been on for a set length of time. The
reason for this was because if two LED threads were running simultaneously the second would
turn on its LEDs but the first would then turn off all LEDs when it died. LedOutput3 aimed
to fix this problem by giving each new LED thread a unique id number and saving the id
of the last thread to alter the LEDs. Using this technique resetAll() and settLed() were
changed so that only the latest thread could alter the state of the LEDs. This meant that when
two threads ran simultaneously the first would be unable to alter the outputs once the second
thread was alive.

This improvement made LedOutput3 ready to be used fully in the software so it was ex-
panded to work for not only the 9 squares of the prototype but for all 64 squares of the full size
board. New methods were also added to allow the programmer to change the time the LEDs
would be turned on for. LedOutput3 is used in the final system every time an LED is light.

5.7 Software Debouncing

As discussed earlier in section 4.8 switches are mechanical devices that are far from perfect and
often make poor contacts, the result of which is that intermediate values appear during the state
change. If not controlled, when these intermediate values create an event the software handler
would treat them as separate button presses and highlight the square that the intermediate

40

value represents, not the correct square.
To combat this problem switch debouncing was added into the software, at that stage an

earlier version of the event listener called FullBoard1. FullBoard1 debounced the switches by
time stamping every event. The time was taken from the system clock using the java Date
object and then stored by the event handler. When another event occurred the current time
was compared with time stamp of the previous event and if it was less than 200milliseconds after
the last event its effects where ignored. This value was eventually dropped to 100milliseconds.
The previous state was also stored so that the event with the highest value, the correct event,
was recognized and acted upon.

Also to ignore small erroneous values the output of the Phidgets Interface kit was normalized
using the SetSensorNormalizeMinimum() method contained within the Phidget
PhidgetInterfaceKit class. This method sets the minimum setting of a sensor’s range. This
is usually 0, but when set to 30 in FullBoard1 the scale is adjusted so that the real range of 30
- 1000 is normalized to 0 - 1000.

5.8 GuardedLCD

As the whole system was being developed it was evident that the use of the Phidgets LCD
would be of great benefit. Only three self explanatory methods, Open(), SetBacklight() and
SetDisplayString(), are needed to operate the LCD. Initially, like the LEDs, classes that
wished access to the LCD used these methods directly but with the increasing use of threads
within the system these direct methods were exported into a new class called GuardedLCD
which contained synchronised, therefore thread safe, versions of all the methods used. Now the
classes only needed to call the GuardedLCD version of SetDisplayString() to display test to
the user without having to worry about the threads currently running.

5.9 MoveGen

5.9.1 Normal Moves

So far all the software has been concerned with single square presses but it is necessary to
construct these individual presses into moves so a new class called MoveGen was created. The
main method in MoveGen is generate() which is called every time a valid event occurs on the
playing area. If the button press is the beginning of a move, there is not a previous button
press stored, then generate() simply stores the number of the square pressed and displays
to the user that the press has been picked up as the beginning of a move. When called again
generate() uses the previous square number along with the newly passed square number to
create a move. These square numbers are then converted into the standard chess coordinate
system of letters and numbers and then fed into the chess engine interface called Main through
its callengine() method. This method eventually returns the computers counter move in the
form of a string. This string must be parsed and the useful data extracted from it. In a standard

41

counter move the string will be 4 characters long and in the form of “b8c6”. The user can be
informed of this move by passing it to the LCD and it can also be split in to square numbers
and highlighted using the LEDs. Discussion of the method used by MoveGen to highlight a
move using LEDs can be found at section 5.10.2.

5.9.2 Special Moves

Sometimes the output of callengine() is not simply a four character string in the format
shown above. If the move is an invalid move then the string returned is “Invalid”. When this
happens the user is alerted to the invalid move and asked to move again.

If the counter move places the computers opponent in check then a ‘+’ symbol will follow
the move notation. In this case the user is informed that they have been placed in check by the
computer. A similar setup happens when the player is checkmated. The ‘#’ symbol follows
the move and an appropriate message is displayed. After a number of seconds wait to ensure
the move has been carried out by the robot the software closes the chess engine and then exits.
There is a known problem with some checkmate conditions that is discussed in section 5.14.1.

The symbol ‘$’ is outputted if the user has checkmated the computer. This scenario has
never been tested due to the difficulty of winning against the chess engine but it carries out a
similar sequence of operations to that of the ‘#’ condition.

5.9.3 Cancel

The original designs of the system allowed a user to cancel a move. This is not strictly allowed
in the chess rules but it was included in the design in case the board did not respond correctly
and formed the wrong move from the users actions. As a result a cancel method is included
in MoveGen. This method allows only limited canceling as a user is only allowed to cancel
half a move, once the move has been passed to the chess engine it can not be undone and the
method returns false. The reason the cancel method is not as powerful as the original design
had intended is because of the complexity raised if the robot has already begun to move the
computer’s pieces. To avoid this complexity a simple half cancel was implemented so that the
user can cancel the first half of a move but not once the two squares have been pressed.

5.10 Extra Output from MoveGen

5.10.1 ThinkingOutput

When MoveGen was complete a new version of the event listener, FullBoard2, was created to
communicate appropriately with MoveGen. When this new event listener was run, after being
fully rested, there was a user orientated problem with the output. After the user had completed
their move the chess engine spent some time thinking before returning its counter move. During
this thinking time it was difficult to tell if the software was still calculating the response or if
the software had crashed. To combat this problem a new output thread called ThinkingOutput

42

was created. The job of this thread was to continually update the LCD when the software was
calculating the response to show the user that the software had not crashed or hung up. This
was done by creating a scroll bar which moved continually along the lower line of the LCD
while the top line of the LCD displayed the text “Calculating Response”. The scrolling bar was
produced by displaying a character array the same length as the LCD. Three of the characters
in this array where the symbols ‘ |’ while the rest of the array was filled with blanks. Every
time slice, a predetermined short interval of time, the characters within the array would be
shifted along one place, the end characters being looped round to the beginning. The thread
continued outputting the changing scroll bar until the reset() method killed it.

The result of this thread was that the user was never in doubt as to what the computer was
doing at any time throughout the game.

5.10.2 LEDhighlightMove

The LEDs are not just for highlighting the squares that are pressed by the user but also
for informing the user as to what squares the computers move involves. Original versions of
MoveGen called LedOutput3 to highlight the individual boxes involved in the counter move
but this required the program to be halted until the first LED was finished so that the both
squares where lit up for an equal length of time. It was also best for the LEDs to stay on for
a longer time when highlighting the computers move than when highlighting the users presses
because the user does not know when to expect the computers response. For this reason a
new thread called LEDhighlightMove was created to illuminate the moves of the computer.
This thread in turn used LedOutput3 to illuminate individual squares while the main program
was not required to wait for the LEDs to finish. When a new instance of LEDhighlightMove
is created the on time for LedOutput3 is set to a longer duration and then the first square
is highlighted using LedOutput3 to ensure all the actions are thread safe. LEDhighlightMove
then waits for the first LED to turn off before setting the second LED. Once both LEDs have
been illuminated the ‘on time’ of LedOutput3 is reset to its original value and the thread dies.

5.11 User Buttons

To allow the user to cancel a move or quit the game user buttons where added in to the board.
Two buttons were added, a Yes/Begin button and a No/Cancel button. These buttons where
wired to the digital inputs of the Phidgets Interface Kit and thus the event listener had to be
expanded to include the method OnInputChange()to cope with events triggered by the changing
digital inputs. Programming the response of the buttons was the most complex programming
that was required when writing software. This was because the actions of the buttons change
depending on the state of the system. An example is when pressing the Yes button, most of the
time the yes button is ignored but if the user had been given the option to quit then pressing
the Yes button will quit the game. Also adding more complexity is operations such as cancel
that act on information contained within other classes, in this case MoveGen. Below is a simple
state transition diagram for the two user buttons.

43

Figure 5.1: State transition diagram for the user buttons

5.11.1 The Yes/Begin Button

The Yes button is only used in two scenarios, to begin the game and to confirm the quitting
from a game. The first scenario is signaled by the running of the WelcomeLEDs startup thread
that will be discussed below. If this thread is alive then pressing the yes button will begin the
game. To ensure a move cannot begin before this the playing area is blocked, all events are
ignored, and the Yes button unblocks the playing area when starting the game.

The state variable quitOption is used to signal if the user is responding to the option of
quitting the game. If this variable is set and the Yes button is pressed then the game is stopped.

5.11.2 The No/Cancel Button

The software handling the cancel button is more complex than that of the Yes button. If a
move is in progress, when the user has entered the first square of the move but has not yet
completed the move, then the state variable moveInProgress is set. When this state variable
is set the handling software calls cancel() from MoveGen. If the cancel is successful then
the method returns true and the user is prompted to move. If the cancel is not successful for
whatever reason the user is told that they cannot cancel at this time.

If the variable quitOption is set then the user is responding to the option of quitting and so
the variable must be reset and the user prompted to move.

44

Under any other scenario not mentioned above when the cancel button is pressed the user
is given the option to quit which they can respond to using these two buttons. In this case
quitOption is set by the software handling the cancel buttons press.

5.12 RobotMove

When the board, chess engine and robot’s control software were integrated together an
inconsistency was found between the robot’s control software and the chess engine as to what
constituted an individual move. For the chess engine a kill move was one where the
destination square had to be cleared of an opponent’s piece and then the computers piece
moved to occupy the square. The robot’s control software considered a kill to only be the
removal of an opponent’s piece from the playing area. As a result an intermediately class had
to be used to break down the chess engines commands into commands for the robot. The
problem was that the second half of the kill move, the moving of the computer’s piece to the
destination square, could only be sent to the RCX once the first half was completed. There
was difficulty transmitting data from the RCX to the infra red tower long after a command
had been sent so a solution involving a new button attached to the Phidgets Interface kit was
devised. A new class, a thread called RobotMove, was added to boards software along with
the new button added to the board. The new button was situated at the computer’s side of
the board, the robot’s home. When a normal move is passed to the robot a new instance of
RobotMove is created within Main, the chess engine’s interface, and passes the information on
to the robot’s control method, Test3. During a kill move the first half of the move, the robots
kill, is passed directly to Test3 and the state variable MultiMove is set by the FullBoard2
method setMultiMove(). The RobotMove thread then sleeps until the robot is home again,
signaled by the clearing of MultiMove. When the robot is home the thread sleeps for a time
longer to ensure the robots grabber has also finished. The time RobotMove sleeps after the
robot has reached home is proportional to the column number of the square were the
opponents piece was removed. The formula to calculate this time is

(destination%8) > 4

? (500 * (destination%8)) + 1000 : 500 * (destination%8)

and was derived from experimental analysis of the robot (times are in milliseconds).

5.13 Extras

5.13.1 WelcomeLEDs

The board’s software can be run by typing the command “run” into command prompt but
to allow the user time to set up the pieces and prepare themselves for a game the class Wel-
comeLEDs was created. This class extends Thread and makes a number of calls to LedOutput3
to create recurring sequences of light using the board’s LEDs. This thread is terminated by
pressing the yes button to begin the game.

45

5.13.2 Sounds

Audio feedback was added to enhance the players experience and to make the task of playing
the robot simpler and more enjoyable. Sounds are played during key points in the game such
as when a button is pressed on the playing area or when the user is placed into check or has
entered an illegal move. A sound is played by firstly creating an AudioClip object and then
using the play() method on that object. An audio clip is created by feeding the constructor a
path to the selected clip. These paths were written out in full and can be found in constants at
the top of the classes that use this function. Writing the paths in full made the program very
difficult to move to a different directory but was done so that the program can be run from
Development Environments such as NetBeans which changes the current directory.

5.14 Known Problems

5.14.1 Checkmate Kills

When the computer checkmates the user and wins the game the move is not always executed
properly by the robot. The error occurs when a kill move is used to checkmate the user. The
controlling thread RobotMove sends the robot the first half of the move, the removal of the
opponent’s piece, correctly. On some occasions the robot does not execute this final half of the
kill move. It is thought this is due to the main thread dying before RobotMove can finish its
job and so a large delay has been inserted after the sending of the first half of the move. This
action has helped but not fully solved the problem. Due to time constraints and the limited
scope of the problem a full fix was not developed

5.14.2 Normal Kill Moves

The infra red link between the RCX and the computer is into the most reliable of data commu-
nications and because of this it is susceptible to errors. A problem occasionally occurs when the
robot only executes the second half of a kill move. This is due to the RCXs not being ready to
receive another move command when it is sent. To remedy this problem an algorithm to calcu-
late the necessary time between transmissions was developed but this is not always sufficient.
If this problem occurs the user may finish the move for the robot and then trick the system in
thinking the robot has moved by moving the robot out from home by a few centimeters and
then returning it to home.

5.14.3 Pawn Promote

The ability for the user to promote a pawn to a queen is implemented and working correctly.
The code for allowing the computer to promote a pawn is not fully tested. The move can
be tested to ascertain whether a promotion has occurred but the handling of this, and the
possibility that this may place the user now in check has not been implemented. This is only
occasionally occurs in games of chess and so it has been left as an acceptable weakness in the

46

cod. If time was available this problem would be remedied by changing the code that analyses
the feedback retrieved from the Main function generate().

5.15 Possible Improvements to the Software

• Fixing the Known Problems
This would be the first improvement that would be implemented if time and resources
where available.

• Adding a GUI
As discussed earlier in section 5.5, a simple GUI was used in the testing of the 3x3
Prototype but not rolled out to the entire system. A GUI for the entire system would
keep the user always informed displaying the current state of the board as well as the
move and other useful information.

• Sounds Only Play After Debounce Time
This is the single biggest problem that emerged from testing. The programmers were
aware of this problem but felt that changing the design significantly, as would be required
to fix this problem, would involve too great an effort invested in an extra feature. The
problem is that the sound that plays when a button is pressed on the playing area plays
when the button is pressed not when the software picks up the move after the debouncing
time delay. Only the LEDs and the LCD are good representations of what the software
has picked up. To fix this problem would require polling the interface kit’s outputs after
the ’down time’ to find out if the button is still pressed and if so play the sound. Just now
all actions occur at input transitions and to change this to incorporate this improvement
is foreseeable but not with the current time line and deadlines.

• Save and Load Games
The option to save and load games would add great functionality to the current system.
This would require changes at both the board software level and the chess engine interface
level. At the board level a user would have to be able to access a load/save menu probably
via a new button and then communicate with the chess engine interface to correctly load
and save.

• Pawn Promote Option
Another improvement that could be added to the system is instead of assuming a player
wishes to promote a pawn to a queen allowing the user to choose. This may require the
addition of scroll buttons on the board as well as a far more complex implementation of
the event handler OnInputChange().

47

Chapter 6

Chess Engine Interface

6.1 Requirements

The core of the system is the chess engine, it being the brain behind all the hardware and
user interaction. It must receive the users move that has previously been detected from the
board, calculate a counter move and feed it back with a description of the move to the board
software that also deals with user interaction in the form of the LCD display, speaker and
LEDs. It is also in charge of feeding the same move to the RCX software that will physically
move the computers pieces on the board accordingly. Without such a tight time constraint
on the project, a Chess Engine could have been developed from scratch providing a greater
challenge and understanding of the game, but instead a suitable open source engine (the term
open source is used for free software) was chosen.

6.2 Choosing the Chess Engine

6.2.1 Engine List

Hundreds of engines are freely available; Figure 6.1 is a list to illustrate the large number of
candidates:

6.2.2 Winboard/Xboard

Winboard and Xboard are both very popular graphical user interfaces for chess which all the
engines are designed to work with. Winboard is the windows version and Xboard the Linux
version. They display a chessboard on the screen, accept moves made with the mouse, and load
and save games in Portable Game Notation (PGN), a standard designed for the representation
of chess game data using ASCII text files. PGN is structured for easy reading and writing by
human users and for easy parsing and generation by computer programs. One of its most useful
features is ability to load 2 chess engines and have them play against each other while we log
and observe their progress through Winboards graphical interface.

48

Figure 6.1: A list of freely available chess engines

6.2.3 FEN

6.2.3.1 Description

FEN is ”Forsyth-Edwards Notation”; it is a standard for describing chess positions using the
ASCII character set. A single FEN record uses one text line of variable length composed of six
data fields. The first four fields of the FEN specification are the same as the first four fields of
the EPD specification. A text file composed exclusively of FEN data records should have a file
name with the suffix ”.fen”.

6.2.3.2 Data Fields

FEN specifies the piece placement, the active color, the castling availability, the en passant
target square, the halfmove clock, and the fullmove number. These can all fit on a single
text line in an easily read format. The length of a FEN position description varies somewhat
according to the position. In some cases, the description could be eighty or more characters in
length and so may not fit conveniently on some displays. However, these positions aren’t too
common.

49

Figure 6.2: Screen printout of Winboard

A FEN description has six fields. Each field is composed only of non-blank printing ASCII
characters. Adjacent fields are separated by a single ASCII space character.

Examples

Here’s the FEN for the starting position:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

And after the move 1. e4:

rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1

And then after 1. ... c5:

rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2

6.2.4 Chess technicalities explained

Castle: To move your unmoved King 2 squares toward an unmoved Rook and to move the Rook
on the other side of the King.
En Passant: Capturing a pawn that moved 2 spaces with a pawn that could have captured it
if it had only moved 1 space, on the next turn only.
Fifty-Move Rule: A type of draw where both players make 50 moves consecutively without
either player advancing a pawn or making a capture.
Promote: What a pawn does that reaches the other side of the board, and assuming the move
is legal, then under any circumstances it can promote to a Queen, Rook, Bishop, or Knight on
the promoting square. So you can have nine Queens, possibly.
Touch Move: The rule that says: 1. If you touch a piece you have to move it, 2. If you let go
of a piece you have to leave it there 3. If you displace an opponents piece, you have to take it.

50

6.2.5 Evaluation Process

Having such a vast choice of chess engines required an efficient evaluating scheme; each of these
could have been compared and tested against each other to filter out poor performances and
find the best version to use in our system. The Lego Chess Robot required a competitive engine
and originally was to provide extra features, such as undo and load/save board state. The main
priority was being able to find a robust, stable, and easily interfaced engine.

6.2.6 Comparing Chess Engines

To simplify and shorten the time required to find a suitable engine, four main engines were
chosen for having different strengths and features. They were GNU, GreenLightChess, Nero
and Horizon.

6.2.6.1 GNU Chess

http://www.gnu.org/software/chess/chess.html
The GNU engine GNU Chess is a free chess-playing program developed as part of the GNU
project of the Free Software Foundation (FSF).
GNU Chess is a communal chess program. Contributors donate their time and effort in order to
make it a stronger, better, sleeker program. Contributions take many forms: interfaces to high-
resolution displays, opening book treatises, speedups of the underlying algorithms, additions of
extra heuristics. These contributions are then distributed to the large user-base so that all may
enjoy the fruits of our labor. Unlike dedicated chess machines, or PC chess programs that run
on only a few different models of Intel processors, GNU Chess runs on many different kinds of
CPU at many different speeds. Thus its strength depends on how fast a machine you run it on
and how much optimization your C compiler does.

6.2.6.2 Green Light Chess

http://www.7sun.com/chess/
GreenLightChess focuses on outputting plenty of feedback to the user, displaying board states
after every change as well as its thinking process when calculating a move. Its documentation
is very thorough and useful.

6.2.6.3 Nero

http://www.mit.jyu.fi/∼huikari/
The Nero engines author Jari Huikari has supplied the source code written in Pascal of his 5.1
version of Nero. It consists of 3000 lines and offers very quick responses to user input, definitely
the most basic of the 4.

51

6.2.6.4 Horizon

http://www.horizonchess.com/
The Horizon engine offers standard features for a chess engine but does show when the user
is put in check by adding a + to the end of the move, something that the other engines dont
provide, the check feature was one of the challenges faced in interfacing a chess engine and will
be discussed in further detail.

6.2.7 Engines playing against each other

6.2.7.1 GreenLightChess 1 - 0 GNUChess in 56 moves

[Event "Computer chess game"]

[Date "2004.12.4"]

[Round "-"]

[White "GNUChess"]

[Black "Green Light Chess v3.00"]

[Result "0-1"]

[TimeControl "40/300"]

1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6 6. Bg5 e6

7. Qf3 Be7 8. O-O-O Nbd7 9. Be2 O-O 10. h4 Qc7 11. Qg3 Kh8 12.

Nb3 b5 13. a3 Bb7 14. f3 Rab8 15. Nd4 h6 16. Be3 Ne5 17. Rhe1

d5 18. Bf4 Bd6 19. Qh3 dxe4 20. fxe4 Nxe4 21. Nxe4 Bxe4 22. Bf1

Nd3+ 23. Bxd3 Bxf4+ 24. Kb1 Bd5 25. Be4 Rfd8 26. Bxd5 Rxd5 27.

c3 Rbd8 28. Re4 e5 29. g3 exd4 30. gxf4 dxc3 31. Rxd5 c2+ 32.

Kc1 Rxd5 33. Qc3 Rc5 34. Re8+ Kh7 35. Qd3+ f5 36. Re5 Rxe5 37.

fxe5 Qxe5 38. h5 Qf4+ 39. Qd2 Qg4 40. b3 Qxh5 41. Kxc2 Qf7 42.

Qd6 f4 43. Qd3+ Qg6 44. Kd2 Qxd3+ 45. Kxd3 g5 46. a4 h5 47. Ke4

h4 48. Kd4 bxa4 49. Ke4 a3 50. Kf3 h3 51. Kg4 h2 52. Kf5 h1=Q

53. Kxg5 a2 54. Kg4 a1=Q 55. b4 Qe5 56. b5 Qhh5#

Black mates 0-1

6.2.7.2 GreenLightChess 1 - 0 Nero in 59 moves

[Event "Computer chess game"]

[Date "2004.12.4"]

[Round "-"]

[White "nerowb51"]

[Black "Green Light Chess v3.00"]

[Result "0-1"]

[TimeControl "40/300"]

1. d4 d5 2. c4 c6 3. Nf3 e6 4. Nbd2 Nf6 5. g3 Bb4 6. Qa4 Na6

7. a3 Bd6 8. Bg2 O-O 9. O-O Qe7 10. c5 Bc7 11. b3 e5 12. b4 e4

13. Ng5 e3 14. Ndf3 exf2+ 15. Kxf2 Ng4+ 16. Kg1 Qxe2 17. Bd2

52

Bf5 18. Rad1 Ne3 19. Bxe3 Bc2 20. Rfe1 Qxd1 21. Rxd1 Bxa4 22.

Rd2 Rae8 23. Kf2 f6 24. Nh3 g5 25. Ne1 Re6 26. Bf3 Rfe8 27. Ng2

h6 28. Bg4 f5 29. Bxf5 Rf6 30. g4 Bxh2 31. Kf3 Bb5 32. Rf2 Nc7

33. Rd2 Ne6 34. Ne1 Bc7 35. Ng2 Ng7 36. Kf2 Nxf5 37. gxf5 Rxf5+

38. Bf4 gxf4 39. Kf3 Re4 40. Kg4 Rf6 41. Kf3 Rg6 42. Ngxf4 Rf6

43. Rg2+ Kh7 44. a4 Bxf4 45. Nxf4 Rfxf4+ 46. Kg3 Rg4+ 47. Kh2

Rxg2+ 48. Kxg2 Bxa4 49. Kf2 Rxd4 50. Ke3 Re4+ 51. Kf3 Bb5 52.

Kg3 Re2 53. Kg4 d4 54. Kf5 d3 55. Kf4 Kg6 56. Kg4 d2 57. Kf4

d1=Q 58. Kg3 Qd3+ 59. Kf4 Re4#

Black mates 0-1

6.2.7.3 GreenLightChess 1 - 0 Horizon in 40 moves

[Event "Computer chess game"]

[Date "2004.12.4"]

[Round "-"]

[White "Green Light Chess v3.00"]

[Black "Horizon"]

[Result "1-0"]

[TimeControl "40/300"]

1. e4 e6 2. d4 d5 3. Nc3 Nc6 4. exd5 exd5 5. Bb5 Be6 6. Nge2

Bd6 7. Nf4 Nf6 8. Nxe6 fxe6 9. Bxc6+ bxc6 10. O-O O-O 11. Qe2

Qd7 12. Be3 e5 13. dxe5 Bxe5 14. Bc5 Bd6 15. Bxd6 Qxd6 16. f3

Qc5+ 17. Kh1 Rfe8 18. Qd2 Rab8 19. b3 Qd6 20. Rfe1 a6 21. Ne2

Re5 22. Nf4 Rf5 23. Nd3 d4 24. Qe2 Re8 25. Qd2 Rb8 26. a3 c5

27. Nf2 Rf8 28. Qd3 Rh5 29. Qc4+ Kh8 30. h3 Qg3 31. Re2 a5 32.

Rae1 Rg5 33. Nd3 Nd7 34. Qb5 c4 35. Qxc4 c5 36. Qe6 Qc7 37. Qe7

Rd5 38. Re5 Rd6 39. Nxc5 Kg8 40. Ne6

Black resigns 1-0

6.2.7.4 GNUChess 0 - 1 Horizon in 73 moves

[Event "Computer chess game"]

[Date "2004.12.4"]

[Round "-"]

[White "GNUChess"]

[Black "Horizon"]

[Result "0-1"]

[TimeControl "40/300"]

1. d4 e6 2. c4 c5 3. d5 f5 4. dxe6 d6 5. Qb3 Nc6 6. Nh3 Bxe6

7. Qxb7 Nb4 8. Na3 Bxc4 9. Bg5 Ne7 10. e4 Bxf1 11. Kxf1 Rb8 12.

Qxa7 fxe4 13. Rd1 Ra8 14. Qb7 d5 15. Qb5+ Qd7 16. Qxc5 Nec6 17.

Qe3 h6 18. Bf4 g5 19. Bg3 Ra5 20. Qb3 Bg7 21. f3 O-O 22. Nf2

53

exf3 23. gxf3 Qe7 24. Re1 Qf6 25. Rb1 Qxf3 26. Qxf3 Rxf3 27.

Kg2 Re3 28. Nd1 Re2+ 29. Kf1 Re8 30. h4 g4 31. Nf2 h5 32. Bc7

Ra7 33. Bg3 Nxa2 34. Nb5 Ra4 35. b3 Rb4 36. Nc7 Nc3 37. Nxe8

Nxb1 38. Nxg7 Kxg7 39. Kg2 Rxb3 40. Re1 Kf7 41. Bf4 Na3 42. Rd1

Nb4 43. Bg5 Nac2 44. Rf1 Ke6 45. Nd1 d4 46. Rf6+ Ke5 47. Rb6

Rb1 48. Rb5+ Ke6 49. Bd2 Rxd1 50. Bxb4 Rb1 51. Rb6+ Kd5 52. Ba5

Rxb6 53. Bxb6 d3 54. Ba5 Ne3+ 55. Kf2 Ke4 56. Be1 Kf4 57. Ba5

g3+ 58. Ke1 Kf3 59. Bc7 g2 60. Bh2 d2+ 61. Kxd2 Nf1+ 62. Kd3

Nxh2 63. Kd4 g1=Q+ 64. Ke5 Qg4 65. Kd6 Qc4 66. Ke5 Qc5+ 67. Ke6

Ng4 68. Kf7 Qc7+ 69. Ke6 Qc6+ 70. Ke7 Qf6+ 71. Kd7 Ne5+ 72. Ke8

Qf7+ 73. Kd8 Qd7#

Black Mates 0-1

6.2.7.5 GNUChess 1 - 0 Nero in 33 moves

[Event "Computer chess game"]

[Date "2004.12.4"]

[Round "-"]

[White "GNUChess"]

[Black "nerowb51"]

[Result "1-0"]

[TimeControl "40/300"]

1. e4 c5 2. Nf3 e6 3. d4 cxd4 4. Nxd4 a6 5. Bd3 Nf6 6. Nf3 Bc5

7. O-O O-O 8. e5 Nd5 9. Bxh7+ Kxh7 10. Ng5+ Kg8 11. Qh5 Qxg5

12. Qxg5 Nc6 13. c4 Nb6 14. Nd2 Bd4 15. Nf3 f6 16. exf6 Bxf6

17. Qc5 Bd8 18. b3 d5 19. cxd5 exd5 20. Bg5 Bc7 21. Nh4 Bd7 22.

Ng6 Rfc8 23. Bf4 Bd8 24. h4 Kf7 25. h5 Ne7 26. Qd6 Bc6 27. Rae1

Bb5 28. Qe6+ Ke8 29. Ne5 Bc7 30. Qf7+ Kd8 31. Nc6+ Kd7 32. Qe6+

Ke8 33. Qxe7#

White mates 1-0

6.2.7.6 Results

GreenLightChess won against all 3 other chess engines. Nero lost against GNU chess showing
that the Pascal engine cannot compete at the same level as engines written and optimized in C.
Horizon played fairly well but its unusual and unpredictable move output cannot be handled
as easily as the other 3 engines, also on two occasions it ”Resigned” against GreenLightChess,
therefore it has to be discarded. GNUChess shown the same functionality as GLC but poorer
results in competition therefore GLC was chosen over it. GLC and Nero were chosen as the
final two possible candidates; GLC offers competitive interactive play with very good docu-
mentation and Nero is very quick and its source code is freely available offering possibilities

54

of expandability. Neither display check situations, this is a major setback which had to be
resolved and is discussed below.

6.3 Checking For Check

6.3.1 Problem Description

All of the engines listed in the section above are designed to work with Winboard which works
out for itself when the game is in check or checkmate therefore requires no extra information
from the engines. As our Chess Robot is to inform the user of check situations through the
LCD display it has to be computed and signalled by the interface.

6.3.2 Possible Solutions

There are two possible solutions to informing the user of check, one is to recode the actual
engine and have it feed an extra character, such as a + in the returned move f5d2+ when the
move puts the opponent in check. Only Nero has its source code available and it is written
in Pascal. The other solution to coincide with the usage of the GLC engine is to store board
representations of the current and previous move, which with methods that use these, can check
whether a colour is in check. This feature would be implemented in the java interface. The
algorithm that would check for this is a complicated one and involves thorough testing but
would work for all Winboard compliant engines.

6.3.3 Editing the Nero Engine

The Nero engine consists of around 3000 lines of Pascal code, with no comments, it was studied
and global variables were singled out to provide extra output when the move computed placed
the opposing colour in check. Below is the code which was used to provide this feature:

computers move;

checkcheck := true;

searchlegmvs(whitesturn, 1);

if(wkingincheck) then write(‘+’);

writeln(‘’);

This proves very successful and with the Nero engine being the quickest it was a good
solution to the problem.

This solution had one major drawback, using Nero which has no extra feature such as setting
the engines difficult, its set time to perform a move, undo a previous move and update its game
according to a FEN notation. Therefore the second solution is now adopted

55

6.3.4 Creating the Java “isColourInCheck” Method

The java check method runs through the current state of the board, represented by a two
dimensional character array. The method takes in a colour which defines which pieces are
being inspected, white pieces are uppercase and black are lowercase. It also identifies the
opponents king as the one that is to be found. Every piece on the board is inspected and all
the squares that they can attack are looked at, returning a check result if the opponents king
is present.

Method Pseudo code:

If colour is white

Make char max and min range limits the ASCII uppercase

Set the opponenets king ASCII uppercase

Else

Make char max and min range limits the ASCII lowercase

Set the opponents king ASCII uppercase

Endif

Loop through every square on board

(

If piece on square is a rook

Loop through every square on its vertical and horizontal while it is blank

If the square contains opponents king return check

If piece on square is a knight

Loop through each of its 8 attacking squares while it is blank

If the square contains opponents king return check

If piece on square is a bishop

Loop through every square on all its diagonals while it is blank

If the square contains opponents king return check

If piece on square is a queen

Loop through every square on its vertical and horizontal and all diagonals

while it is blank

If the square contains opponents king return check

If piece on square is a pawn

Loop through each of its 2 attacking squares

If the square contains opponents king return check

)

Return not in check

This method along with the board representations made it possible to use any of the chess
engines and have a successful way of telling when the user was put in check by the computer.

56

6.4 Engine Interface Design

The engine interface provides two main public methods that the board interface calls, as well
as two static multi-dimensional array to represent the current and previous boards, a number
of private methods are included to modularise the problem.

6.4.1 Using Data Streams

Data input and output stream lets an application read and write primitive Java data types
from an underlying input and output stream in a machine-independent way. An application
uses a data output stream to write data that can later be read by a data input stream. The
two public methods glcsetup and callengine use DataInputStreams and DataOutputStreams to
interact with the chess engine. Originally setup in this class, they required to be declared by
the main thread which is the board interface which instigates engine actions. The streams are
passed as parameters into the methods.

Standard methods used include:

flush(): Flushes the stream.

writeChars(String): Writes a String as a sequence of chars.

readChars(String): Reads a String as a sequence of chars.

close(): closes the stream.

6.4.2 Method and Algorithm Descriptions

Public Methods

6.4.2.1 function glcsetup()

A basic method that reads and prints the initial text that the glc engine prints declaring its
status and details which include version number, copyright information, its hash table size and
the books it refers to for opening moves.

6.4.2.2 function callengine()

The main method of this class which takes in both the input and output stream to the engine
process as well as the move that is to be sent to it.
Tasks

1. Sends the move to the engine

2. Reads its response

3. Check whether response was “invalid” if so return the message

4. Compute the type of the user’s move

57

5. Update the current board representation with the user’s move

6. Compute the type of the computer’s move

7. Update the current board representation with the user’s move

8. Translate destination and source square and movetype to numbers

9. Call the moveHandler class with the 3 numbers

10. Return the computer’s move back to the board interface for user interaction, this also
includes extra information such as whether its Check or Checkmate.

Private Methods

6.4.2.3 function updateboard()

Updates the current and previous board representation with the relevant move given, supports
special cases such as kill, castling, en-passant and piece promote.

6.4.2.4 function printBoard()

Displays the current board representation, very useful for debugging purposes and progress
display in the testing phases.

6.4.2.5 function fenUpdateBoard()

Updates the current board from a FEN notation which can be read from an engine at any point
in a game. It could be used for undoing a move as well as the possible enhancement of allowing
a user to play against the robot from a set chess situation.

6.4.2.6 function isColourInCheck()

Given a colour, checks to see if its pieces are in a check situation. It achieves this by running
through the current board representation inspecting whether the king of the colour given is
attacked by any of the opposing pieces from any of the possible direction.

6.4.2.7 function getMovetype()

An extensive set of comparisons that are based on the move value compared to the current
board, it returns the type of move such as: move, kill, en-passant, shortcastle, longcastle and
piecepromote.

6.4.2.8 function readMove()

Reads a move as a String from the DataInputStream that has been passed in and should have
been opened to the engine. Also returns invalid and checkmate if the engine outputs it.

58

6.4.2.9 function sendMove()

Sends a move as a String and flushes the DataOutputStream it is given

6.5 Pawn Promotion

6.5.1 Problem Description

The user has to be able to make a choice for a pawn promotion when he or she moves a pawn to
the last row of the board. As we have a limited input of two buttons and an LCD display, the
simplest way to offer this choice is to have a menu which lets the user choose either a queen,
bishop, knight or rook.

6.5.2 Solution

To solve this problem the Board Interface needs to know when such a move occurs so it can
offer the choice of a new piece. This is achieved by a new method called piecepromote() which
is called before sending the move to the engine. It checks whether the move is a promotion
type of move and if so returns a signal to the board interface. Once it has received the users
choice it adds the extra character representation of the piece onto the end of the move that is
sent to the engine. When the engine promotes one of its pieces the Board Interface is able to
check for this extra character and inform the user of this new piece.

6.6 Testing

All the errors in the chess interface are systematic. Therefore extensive case testing was used to
iron out any bugs in the code. It was easily achieved by removing the chess engines input and
output, the introduction of a new method called readKeyboardMove() made it possible for the
user to imitate the chess engines output. With no move validation there was a lot of freedom to
play out every special scenario which might have difficult to test when playing the engine. As
the interface took the move from keyboard just like a chess engine move it was possible for it
to also pass it on to the Robot movement section and the board interface to test the movement
and display procedures in all cases considered.

6.6.1 Results

Long castling was found to be buggy as the internal board representation was not updated
correctly; it interpreted it as a normal move. After running through the testing it was found
that the wrong castling move was being detected, a basic interpretation of the chess move made
it difficult to find the problem as the Java syntax was correct.

Enpassant was not functioning properly originally, as a character in the move fed from and
to the engine was being compared to an integer. This was quickly fixed and tests also found
the Robot movement to move as expected in en-passant.

59

Piece promotion was tested to find that when the engine had a piece promoted the user was
simply told of the new piece and its location. When the user promoted their pawns they were
automatically made into queens. Future improvement would have the board interface offering
a menu with a choice of pieces.

6.7 Future Improvements

There are a number of future improvements available for expanding the usability of the Lego
Robot Chess as far as the chess interface is concerned. Most of these features would only be
developed as an extra as they were not targeted as major goals in our original specification
unlike Robot piece movement efficiency and timing.

6.7.1 Undo

The undo feature was discussed by the team, although a useful feature it brought much more
complexity into overall robot movement. The main problem faced in implementing the undo
feature is undoing a kill move where the robot has dumped one of the pieces in its previous
move, for this reason it was abandoned. The current robot does however allow the cancellation
of first square the user presses that is the square that the piece to be moved resides.

6.7.2 Difficulty Setting

A range of difficulty settings should be available for the user to choose before beginning his
game, the amount of user feedback did restrict this option a little as the system only contains
two buttons but a simple menu could be shown on the LCD display.

6.7.3 Piece Promote leading to Check

Due to restrictions on time and the rarity of this situation it was not implemented. Piece
promotion and check is dealt by the chess interface but it also has to interact and be understood
by the board interface as new characters are added to the end of the move, with the two
interfaces being written by different members the differences in coding styles meant the changes
would have to be discussed thoroughly.

6.7.4 The 50 move and the 3 repetitive move draw

Some chess players play with the 50 move draw rule where the game is a draw if 50 moves have
been played without a pawn capture. The 3 repetitive move draw occurs when an identical
move is repeated by each side 3 times. In this Lego Chess Robot they were ignored for the
prototype but could be implemented in the final product.

60

6.7.5 Portability

Having the chess engine running on a different system is a possible enhancement. In the final
product the Robot should be an independent system therefore would require the software to
be programmed into a microprocessor with memory placed in the board.

6.8 Conclusion

The main goals of the chess engine interface were successfully achieved; it provided a robust
and efficient chess game which instructed Robot RCX interface on the next move as well as pass
the move to the board interface to inform the user. The time spent on researching a suitable
chess engine was well spent, although undergoing editing of an engine in a new language to
the team did lead to a dead end it was a possible solution which was thoroughly explored. A
lot of time was spent going through java documents as well as chess engine documentation to
find the available features and tailor them to the need of our Lego Chess Robot. The difficult
algorithms used in the chess interface were all carefully designed to make it easier for them
to be tested in a black box fashion. Many of the unimportant extra features could have been
introduced to the interface but could have jeopardised the main goals being achieved.
Testing quickly revealed the bugs in the rare chess situations which the chess engine did not
often produce. The chess engine being the core of the Lego Chess Robot, simulating its process
output made it possible to test other parts of the Robot system easily.

61

Chapter 7

Programming RCXs

7.1 Available Programming Languages

Over a number of years a vast number of alternative programming languages have been devel-
oped since the Lego Mindstorms kit became popular. Most of them are freely available and
some of them open source. Several alternatives are described below.

7.1.1 Ada/Mindstorms 2.0

This programming language allows the user to program the RCX using Ada 95. Ada 95 might
be easier or even faster to program in but it is not efficient because the programs are translated
into Not Quite C (NQC), and then to byte-code. The produced NQC code would probably be
more complicated and bigger than the original Ada code.

7.1.2 pbForth

This is an incarnation of the Forth programming language for use with the Lego RCX. It can
be used as an alternative firmware. pbForth’s strong point is that it has a small footprint, thus
it leaves more space for the user. The programs are being interpreted and compiled on the
RCX, thus it does not have any additional compilers. Some big drawbacks are that pbForth
does not have a notion of multi-tasking and a new programming language that has been nearly
dead for some years now would have to be learned.

7.1.3 BrickOS

This is another alternative firmware for the Lego RCX, implemented in C . It provides C and
C++ Applications Programmable Interfaces (APIs) for an RCX programmer, using the GNU
C/C++ cross compilation tool chain. BrickOS also provides the necessary tools to download
the compiled programs to the RCX. It allows more low-level access to the hardware such as
memory locations, variables, the LCD and the IR transceiver. It also gives programmers the

62

ability to use threads and POSIX semaphores for process synchronization as well as being a
priority-based preemptive multitasking operating system. The disadvantages of BrickOS are
that it is unstable, according to the projects documentation, it requires the gcc tool chain and
a H8 cross compiler and linker. It also restricts the programming environment to Unix based
operating systems mostly.

7.1.4 leJOS

leJOS is another firmware replacement for the Lego RCX. It’s implemented and can be pro-
grammed in Java. It is multi-threaded, it uses floating point values, multi-dimensional arrays
and exception handling. Extension packages can be added to increase the abilities of the oper-
ating system. The biggest disadvantage was that the Java virtual machine would take up too
much of the precious memory space on the RCX.

7.1.5 tinyVM

TinyVM is an open source Java based replacement firmware for the Lego Mindstorms RCX
micro controller. tinyVM is the predecessor of leJOS. It has the same basic features as leJOS.
It also has more limitations than leJOS. For example tinyVM does not include a garbage
collector, it does not support floating point arithmetic and constant values of type string are
ignored completely.

7.1.6 Lego RIS graphical environment

This is the programming environment that comes with the Lego Mindstorms kit. It is a graph-
ical way to program the RCX. It does not require extensive programming knowledge, but it
gives far less control to the user than any previous explained language. It is more useful for
people with no programming experience or the development of quite small programs and so not
suitable for this project.

7.1.7 Gordon’s Brick Programmer

This is an alternative graphical programming environment which is more powerful than the
Lego RIS environment. It allows the user to access more variables, tasks, subroutines, while
also giving access to the data-log and simple symbolic debugging facilities.

7.1.8 RoboLab

RoboLab is a robust piece of software powered by National Instrument’s LabView. RoboLab is
a graphical programming environment with tiered levels of programming that build skills and
results without painful tutorials. The draw back with RoboLab is that it is not free and it is
not as capable as other programming languages previously mentioned.

63

7.1.9 Spirit.ocx

There is a windows module that allows the user to program the RCX in a few programming
languages such as Delphi, Visual Basic and Visual C++. Unfortunately it is not a great deal of
information concerning this module and also restricts the scope of the project to be Microsoft
Windows.

7.1.10 NotQuiteC (NQC)

NQC is a C like programming language for the RCX micro controller. It uses the already
installed firmware of the RCX, thus it makes it easier to install. It is platform independent,
since the same compiler is ported on Microsoft Windows and Unix operating systems such as
Linux. NQC is relative simpler to use compared to other programming languages and, being
a textual language, is more powerful than the graphical programming environments. On the
minus side, NQC must live within the constraints of the standard firmware. For example, since
the firmware does not provide floating point support, NQC does not support the format unlike
other languages such as pbForth or BrickOS. NQC is very well documented and can be used
with any programming editor like emacs, ConText and others. It creates a smaller footprint,
so it can make more efficient use of the RCX’s memory.

7.1.11 Conclusion

The choice of the programming language used in the project was based on efficiency, porta-
bility, extendability and on the programming languages that the team was comfortable with.
Because of this all the graphical based languages, such as RoboLab, the Lego RIS programming
environment, were rejected. Spirit.ocx and pbForth was rejected because it might be too time
consuming to learn the Forth language or Visual Basic and the second was also not portable.
tinyVM is just an older implementation of leJOS, so it was discarded. This narrowed the possi-
bilities to Ada, NQC, leJOS and BrickOS. The last criteria used to decide upon a programming
environment was efficiency and ease of use. NQC seemed to be the most appropriate tool due
to ease of use; we didn’t have to install new firmware, was well documented, was as efficient as
required, it is platform independent and contains all the essential tools to compile and download
the programs to the RCX micro controller.

7.2 Sensors

The RCX micro controller has a large set of sensors in order to sense it’s environment and
respond appropriately. Lego provides a wide range of sensors like touch sensors, light sensors,
rotation sensors, temperature sensors and others. For example a temperature sensor gives
different values that correspond to different temperatures, as expected. Similar hypothesis
can be made for the other type of sensors. Also, because the sensors are analogue devices
many people have developed their own sensors such as ultrasonic sensors, sound sensors, torque
sensors, pressure sensors and many others. Unfortunately the RCX micro controller has only

64

three inputs and three outputs. Many people have also developed multiplexers to increase the
number of inputs or outputs to overcome this limitation. The use of multiplexers to increase
the number of inputs and outputs makes the program more complicated to handle.

Originally the team decided to use one RCX because the task appeared to be simple enough.
While prototyping and the constraints of the RCX were more obvious. The lack of enough inputs
and outputs for the task resulted in the decision to use two RCXs communicating with each
other. This helped to reduce the complexity of the code used, because the tasks were divided
in two parts. We also had more inputs and more outputs to utilize and of course more memory
space available.

After it was agreed on which hardware architecture the team will follow, the RCX were as-
signed to their specific tasks. Part of the team was building the robot, the rest were researching
and testing the communications between the two RCXs using NQC.

Figure 7.1: Illustrating the different axii the robot must move in

The master RCX was configured as the grabber controller, which is responsible of moving
the grabber across the horizontal axis and the vertical axis, in order to grab the piece and
move horizontally along the board. A rotation sensor was used to calculate the position of each
square on the actual board. The need to move in two axis, x for moving the graber horizontally
and y for moving it up and down, as showen in figure 7.1, imposed the use of two motors on the
outputs. The third output of the RCX was used to control the method of grabbing the pieces.
Under development an additional input was used to sense the home position of the robot, using
a touch sensor. The only disadvantage of using the rotation sensor was that the position of
each square in a row must be predefined. There was no other way to sense above which square

65

the robot was at any time, due to its height. Measurements were carefully taken to ensure as
much accuracy as possible.

The slave RCX was configured to control the mover. It’s job was only to move the robot
on the lateral axis, with respect to the other RCX. There was a problem though. Initially two
rotation sensors were used, but the available resources were limited because other groups were
using the same type of sensor and consuming two of them, was a problem. Ergo, two light
sensors were used instead. Specially printed strips of paper were also used so the sensors could
detect which square they are over. During development and testing of this part of the system,
it was discovered that the robot was not moving both sides at the same time, due to excessive
weight on the side of the robot where the grabber was situated. The problem was fixed in the
software by allowing the system to move each side independently, stop on the intended line and
wait for both sides to synchronize before it continues. The need of two buttons, for returning
to the home position to ensure the robot was re-calibrated each time was discovered. The
difficulty in implementing these two buttons was that there was only one spare input on the
RCX. Hence, a multiplexer had to be used. After researching, the simplest possible solution
was chosen to multiplex two touch sensors on one input.

Figure 7.2: Schematic of multiplexer circuit

The design of the multiplexer is very simple and relays on the fact that the RCX uses
analogue inputs. The idea was that the analogue input can be exploited by using a potential
divider, two different resistors effectively, in series with each button. This design did not work
when we declared the input as a standard touch sensor type, thereby we masked it as a light
sensor. This subject will be revisited in more detail in the next section.

7.3 The Code

The algorithm for the two RCXs is relatively simple. The basic idea is to wait for a message.
After receiving a message, it is evaluated and the appropriate tasks were performed e.g. making
a move. Since the overall architecture is master/slave, the master is responsible for commu-
nicating with the slave and it instructing as to what task to perform. The algorithm for the
master RCX is as follows

66

Wait for message

evaluate message and begin task

calculate where to move

send message to slave RCX to tell it where to go

wait for acknowledgment, when you arrive at position

get piece from board

send signal to slave RCX to move to new square

wait for acknowledgment

put piece to board

send signal to slave RCX to go home

return home and wait acknowledgment

This algorithm changes slightly according to the performed task, but the overall higher level
pseudo code is the same. The algorithm for the slave RCX is simpler because the RCX has less
actions to perform. The pseudo code is as follows

Wait for message

evaluate message and begin task

go to given square

send acknowledgment

Both RCXs try to achieve the main goal concurrently. Each task is executed independently
with one RCX synchronizing the overall task. Concurrency is important when timings are
quite critical, but still there must be some kind of synchronization in order to complete the
goal without one task executing prematurely.

A great challenge was implementing the mover so it was able to detect transitions and to
correct itself from skewing. To make the robot detect a transition was not very difficult but
the problem was that the one side of the robot was moving faster than the other. During
investigation and careful study of the problem, the error was not consistent. It was related to
the fact that the weight was not equally shared on the robot. Hence, the problem had to be
fixed in the software. The easiest way to do this, without making big changes to the code, was
by stopping individually each side of the robot once it reached the desired square.

Another problem that the mover had, due to the skewing error, was the fact that it did
not calibrate sufficiently each time it reached the home position. Ergo, a small error was being
added each time to the movement and it became considerable after moving a few times. The
solution to this problem was to add two buttons on each side of the robot so it could detect
when both sides were at the home position. There were not sufficient free inputs on the RCX
but construction of a small multiplexer solved the problem. Masking the input as a light sensor
gave a larger resolution than defining the input as a touch sensor. This trick allowed the RCX
to pickup different values for each button pressed and even different value when both buttons
were pressed. This proved to be helpful later on when the code to control the robot actions
was developed. The same idea of home sensing was also adopted on the grabber, in order to
minimize any errors from the imperfection of the hardware.

67

Figure 7.3: Picture of mulitplexer

Code was also developed to allow the computer to communicate with the RCXs. After some
researching on the Internet, a Java API was found. This API was simple to use and included a
few examples to demonstrate it’s usage. The API satisfied our needs, since it supported sending
commands and messages from the computer to the RCX. After playing around to familiarize
with the API, a basic and simple method was constructed. The method takes three values as
parameters; the start square, end square and move type. The start and end squares are the
square numbers on the board, using the numbering scheme described in section 4.9. The type
of the move is an integer from zero to five associated with the five possible move types, a regular
move, kill move, short castling move, long castling move and en passant move. All members
involved in programming agreed on this numbering scheme.

7.4 Communications

Communications between the RCXs and the computer was essential. Since, the RCXs were in
a master/slave architecture, the communication protocol between the RCX and the computer
was not as complex as it was expected. The only official way to communicate with the RCX was
through messages. But this method was not sufficient because, from the possible 255 messages
we could not use the first 63, due to the numbering of the squares on the board. Also, the
method of waiting for three messages to be received and then start executing the task would
add to the overall performance time of the robot.

After careful study and a lot researching on the Internet to find a solution that would be
faster, the team came across an opcode reference for the RCX. The opcode reference included
commands that allowed control of the RCX from a computer. Also this reference included a few
special commands, like setting variables on the RCX, locking and unlocking the firmware among
others. The most interesting for the purpose of this project was the opcode that allowed you

68

Figure 7.4: The two RCX blocks used, lined up for communication

to set a value to a specific memory location on the RCX. Immediately testing on the opcodes
started. The opcode reference was confusing, with some descriptions for only some types of
opcodes. There was a short hint at the end of the page, in the “Known Issues”, that clarified
the issue somewhat.

Thankfully, NQC can reserve memory locations for specific use. So reserving some memory
locations for storing the transmitted values of the start and end squares was a simple task.
This idea can also be used to identify different RCXs in the same area.

void msg(int sqr)

{ /* Special opcode message to the other RCX to set where it will go

- opcode 14 - see opcode reference */

ClearMessage();

SetSerialComm(SERIAL COMM DEFAULT);

SetSerialPacket(SERIAL PACKET RCX);

SetSerialData(0, 0x14);

SetSerialData(1, 0x17);

SetSerialData(2, 0x02);

SetSerialData(3, sqr);

SetSerialData(4, 0x00);

SendSerial(0,5);

}

Sending information back from the RCX to the computer was needed in order to notify the rest
of the system to continue the game. This would make the response time smaller, because the
system would be notified sooner for small moves or failures. The problem was that the tower

69

connected to the computer only stayed open for a few seconds. A solution to this problem was
that a ping could be sent every few seconds keeping the tower open and ready to receive the
response from the RCX. The idea was abandoned quite early on because if the RCX would try
to send data when the tower was off it would miss it and it would not know if the message was
received successfully. There was also a great number of errors on the computer side and that
made the message handling slower and more unreliable. A simpler and efficient way had to
be found. After consulting the project supervisor for ideas and after giving some thought on
the problem, an idea to connect a second button to the one end of the robot’s home position
was suggested. The idea was to handle the feedback of the robot with the Phidgets kit since
it sounded simpler, easier and neater to do it in Java. Ergo, we could detect when the robot
finished it’s move by sensing when it was “home”. This is discussed in section 5.12.

7.5 Testing the system

Testing the system was essential since hardware and different timings from subsystems were
involved. Testing the code often decreased the coding time since bugs were obvious. Once a
subsystem or part of the code was developed it was immediately tested. After the final version
of the code for the RCXs was complete, integrating the subsystems revealed some previously
unconsidered timing problems, which were fixed immediately.

Figure 7.5: The robot moving a glass piece during early testing

The basic strategy for testing the system was to test each individual move as soon as possible
and as often as possible. As a result the same tests were repeated each time a new subsystem
was tested, in order to ensure that it did not affect the previous developed code.

The basic problem that was faced during testing was timings. Many times things appeared
to work perfectly but the timings were not synchronized so it ended up doing the wrong thing.
It was having timing problems when it should place the piece on the board. Through performing
many different tests and designing special tests that were more likely to make it fail, the final

70

code is relatively bug free.

7.6 Improvements / Extensions

There is room for improvement in the code. An option of adding an identity on the RCXs
in order to identify them among others in the same area, is also taken into account. Error
detection and error handling from the computer can be added, in order to ensure that the
commands are always received correctly by the RCXs. Finally, detection when the batteries
are running low could be added, in order to notify the user to take appropriate actions.

71

Chapter 8

Conclusion

8.1 Project Status

The project has accomplished all goals set by our requirements specification; the robot detects
the players move, computes its counter move, and moves its piece accordingly. As the quantifi-
able factors are concerned standard moves are achieved in under 2 minutes and the kill moves
in 3min 40. Accuracy and efficiency has also been met. The team also managed to include
extra features on top of the finished model like speech output of moves.

8.1.0.1 Vehicle Design

The finished model for the robot is fully functional and performs all tasks for the computers
moves. It was based on the Theme Park Grabber model which was prototyped into 5 different
modules before being integrated together. There are 3 different gearing systems to provide a
slow accurate movement of each component of the robot. Although the vertical movement of
the grabber is sufficient to pick up and drop pieces in the prototype, the addition of an extra
motor would ensure smoother movement.

8.1.1 Positioning

The robots movement is accurate to within 2mm from position on starting square to destination
square. The skewing between either sides drive mechanism is handled by the light sensors
stopping each motor at the line corresponding with the destination line.

8.1.2 Chess Interface

The interface functions successfully with the GLC chess engine running on a Windows environ-
ment. The maximum thinking time has been set to 20 seconds although never takes that long
as it has been allocated a 16MB hash size. It provides a hard game to the user and to date
has not been beaten. It detects all invalid moves and supports castling, enpassant and basic
piecepromotion.

72

8.2 Conclusions

8.2.1 Achievements

During the course of this project all team members have gained experience in team work and
communication skills. Coordinating all our efforts together to meet deadlines improved our
planning and time management. Verbal reasoning also allowed team members to voice there
opinions in a way that didnt force others to agree with them. Each team member can also
boast specialised knowledge in their own area of the project. Good time keeping was required
of all team members as some work on some sections such as RCX program implementation
depended on others being completed. This knowledge had to be passed to other members when
integrating separate components of the project and this improved each members communication
skills. Skills were demonstrated throughout the project; the team was able to research a
possible project idea and prove its use and need for development to a third party. The project
was properly broken into modules for each member to tackle and deadlines were set, with
weekly meetings to assess possible risks and progress the overall project was run very smoothly.
Electrical and electronic engineering skills were shown in the creation of the board circuit and a
multiplexer for the RCXs. Innovative engineering frames of mind helped construct Lego models
possible of achieving general theoretical ideas. Software engineering skills were relied upon
when developing interfaces for the board, chess engine and the RCX NotQuiteC programming.
Strong object orientated ideas helped produce reusable software that could be easily integrated
together to form a fully functioning system.

8.3 Further Improvements

With more time the team would have liked to implement more functionality to the project
including:

• The system could easily be made possible for the user to play as black instead of white.
Due to time restrictions, efficiency aspects of the robots were concentrated on.

• The system could be made machine independent, even portable with the chess engine
and all three board, engine and RCX interfaces programmed onto a microprocessor with
memory alongside it. The RCX would require to be fixed as well as the IR tower which
sends the instructions.

• The addition of more buttons to the final model to allow the user to undo a move as
well as being able to offer a draw. The user being able to set the difficult it wished to
be playing against. The LCD display could also be made larger to increase the feedback
provided to the user.

• The games could be logged and possibly printed for experts to analyse a certain game
pattern that they had played.

73

Appendix A

Summary of Project Logs

A.1 Stewart Gracie

October

• Introduced to Lego Midstorms Kit in the Lego lab

• Meeting arrangements decided - location, day and time each week

• Im allocated job of keeping meeting minutes

• Communication between members sorted- email and phone

• Possible project proposals including Rubik Cube solver, GPS robot and
3d scanner

• Experimented with Lego design

November

• Chosen project as Chess playing robot and explained idea to supervisor

• Make choice between robot with magnets or arm, arm is decide upon

• Started to create a requirements specification to be accepted by supervisor

• Began to create a Gantt chart to show deadlines

• My main task is to design and build the Lego robot

• Started to prototype models for the grabbing unit

74

December

• Finished design for grabber, started on building mechanism to lift it

• Allocate different sensors to be used with robot prototypes

• Discover there are constraints on the number of sensors and motors

• Ordered two 16 inch poles for lifting mechanism

• Started designing geared motors to create greater torque and slower speed

January

• Started prototyping structures to move grabbing unit

• Ordered more Lego components to complete structure and tracks

• Prototyped drive train to move structure

• Drive is too fast and needs to be geared down

• Testing shows light sensor needs to be boxed in to block out ambient light

• Test motors to find two that run at the same speed

February

• All robot mechanisms are integrated together for testing

• Testing shows changes need to be made to lifting mechanism for grabber,
grabs pieces too high

• Grabbers axle doesnt hold pieces well, added material to create friction on
axles

• Start on documentation for report

March

• Start MLCAD drawings for report

• Start taking photographs of robot for report

• Proof read other team members reports

• Finished drawing and cropping all pictures

75

A.2 Jonathan Matthey

October

• Introduced to Level 3 ESE Lab and Lego Mindstorms

• Researched intensively for a week on possible project ideas

• Shared with team resourceful websites found with previous lego projects

• Presented Magnetic Chess Robot, Arm Chess Robot and Rubix Cube ideas
to the team with drawings and explanations

• Met with supervisor to discuss shortlist of ideas, he didn’t take to the Lego
Chess Robot initially

• Produced an early project description with goals and a project plan to
convince Supervisor of the Project’s depth

• Supervisor introduced us to new Phidgit technology, we found it useful
for the board and displaying information to user through LCD display.

November

• Wrote Final Requirements Specification with Risk Management Scheme

• Set up Team FTP webspace for documents and illustrations

• Meeting with team to delegate tasks across our four team members

• I was in charge of the Chess Engine, its Interface and also helping Stewart
developing useful Lego prototypes

• Found Mario Ferrari Lego Mindstorms book at Library for Stewart

• Helped Stewart prototyping the Lego Grabber to the final model

• Found five suitable chess engines to compare

• Learnt about Winboard and using it to play engines against each other

• Read through Winboard and GNUChess documentation to highlight
how to communicate to the engines as well as where functions were
implemented (eg. the Check function)

76

December

• Installed Java Netbeans 4.0 to team machine

• Studied using Java DataStreams and Runtime Environments on ways to
interface a running executable.

• Hunted for appropriate Chess pieces online, compared them to find a suit-
able set

• I chose a weighed set with very good ridges to ease the grabbers task

• Built the two vertical struts and beam for Lego Robot to work on a small
scale

• Took pictures of early prototype for documentation purposes, showed to
supervisor

• Learnt Pascal basics through books and tutorials

• Installed FreePascal Development Environment

January

• I found the grabber to have a limited clearance due to length of plastic
Lego bar

• Bought carbon fibre rods rather than metal to extend its vertical reach

• Designed the algorithms and board representations needed in the Chess
interface for the various extra features required to support the GLC Chess
Engine

• Implemented the Chess Interface in Java and publicised all method calls
to David

• Discussed with Kostas on how to translate the board squares and the
move types to integer values

77

February

• Integrate Chess Interface with working board interface producing a
playable chess game without any robot movement

• Demonstrated the game playing aspect of the system to supervisor with
good feedback

• Created extra functions to chess interface; undo and loading board repre-
sentation from FEN notation

• Identified vertical movement problem on robot grabber, solved by strength-
ening the contact and smoothing the movement.

March

• Ran extensive simulations of the chess engine by feeding it set patterns to
test with a wide range of systematic test cases

• Fixed code according to results from tests of castling, en-passant and piece
promote.

• Created illustrations and pictures for team to use in Documentation sec-
tions

• Wrote personal Introduction to Team Project

• Wrote Chapter 6 of Documentation on Chess Engine Interface

• Wrote Abstract and merged Introductions for final document

• Proof read Stewart and David’s Document Sections

78

A.3 David Rankin

October

• Introduction to the project lab, lego kits and our advisor

Roderick Murray-Smith.

• Possible projects are discussed and researched.

• Researched into the difference between the Lego mindstorm

RCX and the Phidgets, eventually advising the group to adopt the

Phidgets for use in the board.

• Carried out experiments and research into the Phidgets

hardware.

• Created test programs to interact with Phidgets hardware

• Decided on Lego Chess Robot project.

• Assigned responsibilities for the Board and all its software.

November

• Development of 5 switch prototype and other Phidget

‘sensors’.

• Created an early prototype for chess robot which

influenced the final design.

• Designed and developed 3x3 Prototype.

• Development of basic software for use with the 3x3

Prototype.

• Testing of all hardware and software developed thus far.

December

• Expansion of software for use in 3x3 Prototype, GUI added.

• Design of PCBs for board circuit. PCBs etched over

Christmas holiday period.

• Researched into logic for LED control circuit.

• Testing of all hardware and software developed thus far.

January

• Construction of board circuit.

• Construction of LED Control Circuit.

• Extensive testing of board circuit and software.

• Design of board’s wooden case.

79

February

• Interfacing board software with chess engine interface

software.

• Creation of wooden case and the installation of all

circuitry with in it.

• Programming of user buttons on board.

• Creation of RobotMove to integrate robot and chess engine.

• Addition of sounds in the software.

March

• Development of User Guide which was used when I ran

formal summative testing (appropriate documentation attached).

• Final Testing and improvements. Assisted Kostas in making

the computer talk.

• The “Board Design and Construction” and “The Board’s Software” chap-
ters were

written.

• Compilation of final report into LaTeX form and carried out proof reading
of document.

• Creation of source and media CD.

80

A.4 Konstantinos Topoglidis

October

• Introduced to Lego Midstorms Kit in the Lego lab by Rod

• Arrangements made for weekly meetings

• I was the Configuration Manager for the team

• Exchanged emails and phone numbers

• A small research was made to find out about the RCX

• Project proposals for a GPS robot

• Sorted the Lego in the lab and counted the RCXs

• Divided the RCXs into the three teams

November

• Presented ideas to supervisor and made a decision making a chess robot

• Plan for the project and the constructive way that the team will follow,
was made

• Requirements specification was made and presented to the supervisor

• The task I took was to make the programs for the robot and help with
construction when needed

• Researched to learn more about the RCX

• Started to play around with the RCX and NQC

December

• Researched more about the RCX and it’s limitations

• Played around with the rotation sensor and a motor

• Studing other peoples code and the NQC documentations for communica-
tion

• First program to do a very simple movement of the prototype robot was
developed

81

January

• Started coding and testing the RCX and light sensors for transitions and
accuracy

• Splitting the code into small basic and reusable functions

• Found out more about the Java API for the Lego tower and played around
with it

• Decided upon Master/slave communications architecture

• Found out more about the opcodes and tested them

• The robot can move on all three axis

February

• Robot subsystems are integrated together for testing

• Skewing problem appeared

• Decided to put touch sensors for sensing home position

• A small multiplexer needed for the two touch sensors

• Idea for the multiplexer designed, constructed and tested

• Different timing problems occured

• All code was ready and testing started

• Start on documentation for report

March

• Coding finished completely and played a game

• Assigned as the teams photographer

• Start taking photographs of robot for report

• The “Programming RCXs” chapter was written

• Proof read other team members reports and made suggestions

82

Appendix B

Installation Instructions and

Stepwise Guide

B.1 Installation

B.1.1 The Chess engine

The default chess engine for the Lego Chess Robot is called Green Light Chess (glc). This chess
engine runs on the computer and so it is necessary to install all the appropriate files in the
right place. The files for the chess engine can be found on the cd in the ‘Chess Engine’ folder.
Within this folder is a zip folder called glc300 and this should be extracted to a glc directory
in the C drive. Once complete the path

C:\glc

should lead to the contents of the folder.
Once done that copy the “Board Software” folder to a destination of your choice.
Navigate to this directory within Command Prompt (accessed by trying

cmd

in the run menu). Once within the Board Software folder on the computer type in the command

runTalk

to run the software. The LEDs will begin to flash. Once a welcome sound is played press yes
to begin the game.

Ensure the Phidgets is plugged in and the RCXs are on and running and facing the tower.

B.2 Starting a Game

When the software is launched (typing ”run” within the appropriate directory) the lights will
flash in a recurring pattern. When the pieces are set up and you are ready to play, press the

83

YES button as prompted by the display.

B.3 Making a Move

• First press down on the piece you want to move at the square it is currently in. A noise
will sound and if the press was detected the lights will highlight the correct row and
column. The display will then be updated to show this first half of the move.

• Once the first press has been detected, move the piece to the new square and press down
on it again. If the move is detected, the move will be displayed on the screen and the
chess engine will begin calculating the response. Once a counter move has been calculated
you will be informed via the lights and the screen. The robot will move for the computer.

• If a press is not detected by the board then the lights will not illuminate and the text
screen will not update. In this scenario please repeat the press of the piece but holding
down for a longer duration.

• If the move entered is an illegal chess move, the chess engine will stop calculating the
counter move. The display will then be updated to indicate an illegal move has been
made and will also prompt the user to make another move.

B.4 Sounds and Lights

When making a move, a sound will be heard as the square is pressed but the lights on the board
will only update after the piece is lifted from its square. If the move has not been detected
properly then the lights and the screen will not update (note the sound will still occur even if
the press has not been detected). If the move has not been detected repeat the pressing of the
piece but hold it down for longer.

Different sounds can be heard when an invalid move is entered or if you are put in check by
the computer. If an unfamiliar sound is heard please refer to the text display for more detail.

B.5 Cancelling Moves

The cancel button can only be used to cancel the first half of a move. If you have only pressed
down on the piece once and not moved it, then you may cancel by simply pressing the button.
If you have completed the move then you cannot cancel.

B.6 Quitting

Pressing the Cancel button when you have not started a move will give you the option to quit.
To exit a game press Cancel and then press Yes to confirm. Pressing Cancel when you are given
the option to quit returns you to normal play.

84

B.7 Castling

If you wish to castle, press down on the King when moving him but do not press down on the
Rook (Castle). Simply move the rook without pressing on any squares.

B.8 Taken Pieces

Please do not place taken pieces in the path of the robot or in the ditch at the back of the
board.

85

Appendix C

Glossary of Terms

RCX : Robot Command eXplorer, the Lego microcontroller

Phidgets : “Physical Widgets” are USB interface modules

PCB : Printed Circuit Board

LED : Light Emitting Diode

MDF : Medium Density Fiberboard

NQC : A C-like programming language for the Lego Robotic Inventions kit

API : Application Programming Interface

LCD : Liquid Crystal Display

IR : InfraRed

GNU : Gnu’s Not Unix, a free Unix style Operating System

JAVA : A high-level object oriented programming language developed by Sun Microsystems

C : A widely used, general-purpose programming language developed by Dennis Ritchie in the
late 1960s

RIS : Robotic Inventions System

Lego : Danish “leg godt”, which means to “play well.”. A well known toy company

ESE : Electronic Software Engineering

DAC : Digital to Analog Converter

FM : Frequency Modulation

GUI : Graphical User Interface

PGN : Portable Game Notation, used for saving games of chess

FEN : Forsyth-Edwards Notation. It is a standard for describing chess positions using a text
character set

86

WinBoard : A graphical user interface for chess

GLC : Green Light Chess, a WinBoard engine that plays chess

NetBeans : A cross-platform Java development enviroment

ASCII : American Standard Code for Information Interchange

FSF : Free Software Foundation

87

Appendix D

Chapter 3 Extra Information

D.1 Matching Motor Data

Motor Number Test 1 Test 2
1 678 680
2 598 608
3 676 678
4 764 745
5 701 709
6 597 611
7 567 579
8 679 701
9 592 579
10 743 752
11 682 700
12 632 650

By examining this data motors 1 and 3 were chosen as suitably matched to drive the robot
with little skewing.

Motors 5 and 8 were also possible candidates but the range of values between the motors was
considered too large.

88

D.2 Chess Piece Selection

http://www.chess-sets-uk.co.uk
This chess set was considered as it had slight ridges around the base of each piece although

the pawns had a slightly smaller ridge than other pieces. For this reason this chess set could
not be used.

http://www.wooden-chesssets.co.uk
This slightly different wooden chess set was also considered as all pieces had a ridge at the

base. On closer inspection though the rooks ridge isn’t large enough to be held

http://www.chessbaron.co.uk
This chess set was chosen to be used for the project as its large ridge and round body was

ideal for the grabber to pick up. This set was only substituted for the current set due to its
59.99 price tag compared with the 29.99 of the set used.

The chess set used by our project can be seen at the following web address

89

http://www.chessbaron.co.uk\CARTgallery1.htm. This set is described as a Concave Staunton
Chess Set and has good quality pictures to show all pieces.

90

Appendix E

Tester’s Consent Forms

91

